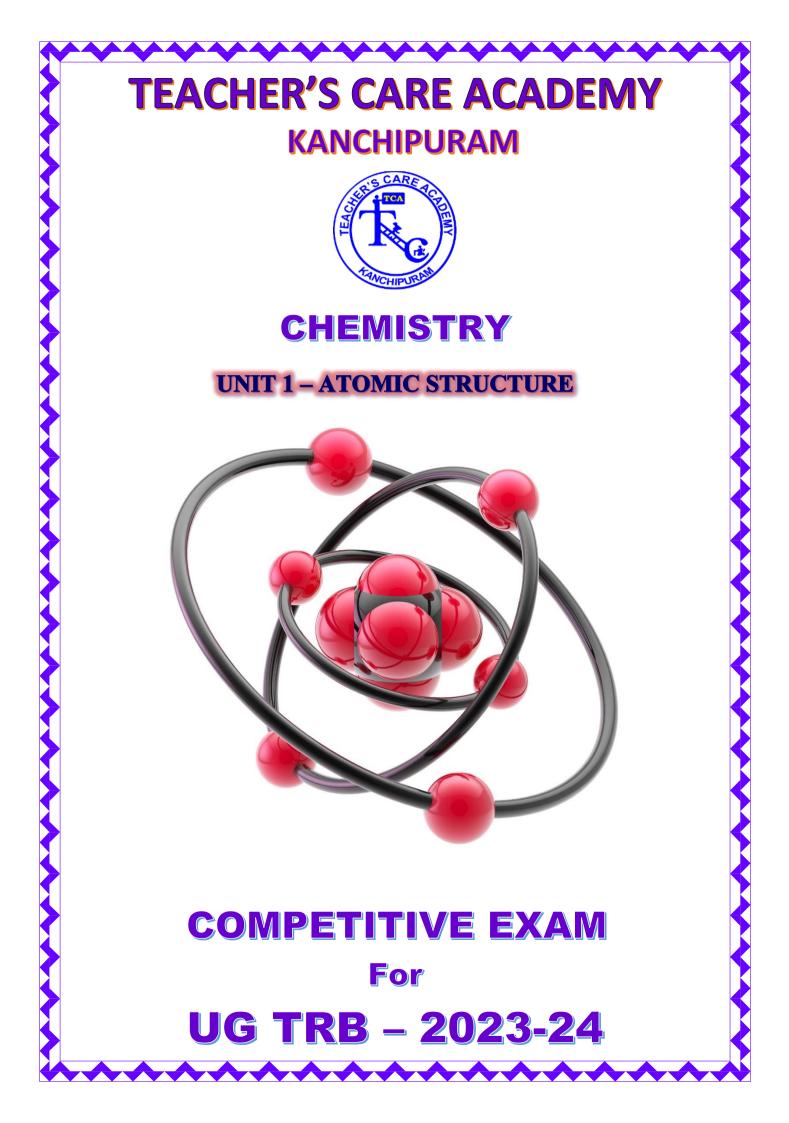


TEACHER'S CARE ACADEMY

38/23, Vaigundaperumal Koil Street, Kanchipuram-1 Mobile : 95665 35080, 97862 69980 Help Line Numbers : 9360268118,7639967359

UG TRB CHEMISTRY 2023-2024


UNIT-1

ATOMIC STRUCTURE AND PERIODIC CLASSIFICATION & CHEMICAL BONDING

Your Success is Our Goal....

Website : www.tcaexamguide.com

Mobile App : tcaexamguide

	INDEX	
S.N.	CHAPTER	P.N.
1.1.	INTRODUCTION	1
	1.1.1. Different Kinds of Atoms	2
1.2.	ATOMIC STRUCTURE	5
1.3.	HISTORY OF THE PERIODIC LAW	7
1.4.	CLASSIFICATION OF THE ELEMENTS	8
1.5.	THE FIRST PERIODIC TABLE	8
1.6.	OTHER VERSIONS OF THE PERIODIC TABLE	9
1.7.	PREDICTIVE VALUE OF THE PERIODIC LAW	9
	1.7.1. Discovery of New Elements	9
	1.7.2. Significance of Atomic Numbers	10
	1.7.3. Elucidation of the Periodic Law	11
1.8.	THE PERIODIC TABLE	11
	1.8.1. Periods	11
	1.8.2. Groups	11
	1.8.2.1. Classification of Elements into Groups	
	1.8.2.2 Periodic Trends in Properties	
1.9.	THE BASIS OF THE PERIODIC SYSTEM	14
	1.9.1. Electronic Structure	14
	1.9.2. The Electron Occupancy of the Shells in the Noble Gas	16
	Atoms is as Follows	
1.10.	PERIODICITY OF PROPERTIES OF THE ELEMENTS	17
	1.10.1. Periodic Table with Room-Temperature State	19
1.11.	THE PERIODIC TABLE	21
1.12.	GROUP NAMES	22
1.13.	IMPORTANCE OF PERIODIC TABLE	23

1.14.	SIGNIFICANCE OF THE PERIODIC TABLE IN THE STUDY OF CHEMISTRY	23
l .15.	USES OF THE PERIODIC TABLE	23
1.16.	ATOMIC MODELS	25
	1.16.1. Dalton's Atomic Theory	27
	1.16.1.1. Demerits of Dalton's Atomic Theory	
	1.16.2. Thomson Atomic Model	27
	1.16.2.1. Cathode Ray Experiment	
	1.16.2.2. Observations	
	1.16.2.3. Conclusions	
	1.16.3. Thomson Plum Pudding Model	30
	1.16.4. Rutherford Atomic Theory	30
	1.16.4.1 Alpha Ray Scattering Experiment	
	1.16.5 Rutherford's Structure of Atom	31
	1.16.5.1. Limitations of Rutherford Atomic Model	
	1.16.6. Bohr's Atomic Theory	32
	1.16.6.1. Postulates	
	1.16.6.2 Limitations of Bohr's Atomic Theory	
	1.16.7. Sommerfeld Atomic Model	34
	1.16.7.1 Fine Structure of Spectral Line	
	1.16.7.2 Drawbacks of Sommerfeld Atomic model	
1.17.	EXPLANATION	39
	1.17.1. Rydberg's Formula	43
	1.17.2 Problems Based on Hydrogen Spectrum	44
1.18.	ELECTROMAGNETIC RADIATION	48
	1.18.1 General Properties of all electromagnetic radiation	48
	1.18.2 Properties of Electromagnetic Radiation	49

	1.18.3 Radiation Types	50
	1.18.4 Equations of Waves	53
	1.18.5 Interference	53
1.19.	DUAL BEHAVIOUR OF ELECTROMAGNETIC RADIATION OR BLACKBODY RADIATION	54
	1.19.1 Particle Nature of Electromagnetic Radiation	55
	1.19.2 Wave Nature of Electromagnetic Radiation	55
1.20.	PLANCK'S QUANTUM THEORY	58
	1.20.1 The Discovery of Quantum	59
	1.20.2 Evidence in Support of Planck's Quantum Theory	60
	1.20.3 Relation of black body radiation with Planck's Law	60
	1.20.4 Postulates of Planck's Quantum Theory	61
	1.20.5 Applications of Planck's Quantum Theory	61
1.21.	HISTORY OF THE PHOTOELECTRIC EFFECT	63
	1.21.1 Photoelectric Effect	63
	1.21.2 Explanation	63
	1.21.3 Applications of Photoelectric Effect	64
1.22.	COMPTON EFFECT	64
	1.22.1 Significance of Compton's Effect	65
	1.22.2 Derivation of Compton Effect	66
	1.22.3 Applications of Compton Effect	67
1.23.	de BROGLIE RELATIONSHIP	69
1.24.	de-BROGLIE EQUATION	71
	1.24.1 Derivation	71
	1.24.2 Applications of de Broglie Waves	71
	1.24.3 Thermal de Broglie Wavelength	72

	1.24.4. Significance of de Broglie Equation	72
	1.24.4.1 De Broglie Wavelength	
	1.24.5 De Broglie Hypothesis: Conclusion	73
.25.	INTRODUCTION TO HEISENBERG UNCERTAINTY PRINCIPLE	75
	1.25.1 Heisenberg Uncertainty Principle:	75
	1.25.2 What is Heisenberg's Uncertainty Principle?	76
	1.25.3 Origin of the Uncertainty Principle	76
	1.25.4 Derivation of the Heisenberg Uncertainty Principle	77
	1.25.5 Example of the Heisenberg Uncertainty Principle	78
	1.25.6 Heisenberg Uncertainty Principle Equations	78
	1.25.7 Numerical Problems on Heisenberg's Uncertainty Principle	79
1.26.	PERIODIC PROPERTIES OF ELEMENTS	83
	1.26.1 Explanation for Periodic Properties	83
	1.26.2 Basic Periodic Properties are Given Below	83
	1.26.3 Periodic Law	84
	1.26.4 Problems Based on Periodic Properties	87
1.27.	EFFECTIVE NUCLEAR CHARGE	91
1.28.	SCREENING EFFECT	92
1.29.	SLATER RULE	93
1.30.	POSTULATES OF QUANTUM MECHANICS	94
	1.30.1 Operators	95
	1.30.1.1 Operators in Quantum Mechanics	
	1.30.1.2 Types of Operator	
	1.30.2 Schrodinger Wave Equation	98
	1.30.2.1 Explanation of Schrodinger Wave Equation	

	1.30.2.2 Derivation of Schrodinger Wave Equation	
1.31.	SIGNIFICANCE OF Ψ AND Ψ2	101
1.32.	WAVE MECHANICAL CONCEPT OF ATOMIC ORBITALS	103
	1.32.1 Features of Quantum Mechanical Model	103
1.33.	CHEMICAL BONDING	105
	1.33.1 Types of Chemical Bonding	105
1.34.	FACTORS INFLUENCING IONIC BOND	107
	1.34.1 Lattice Energy	107
	1.34.2 Formula for Calculating Lattice Energy	108
	1.34.3 Lattice Energies and the Strength of the Ionic Bond	108
1.35.	INERT PAIR EFFECT	111
	1.35.1 Limitations of Inert Pair Effect	112
	1.35.2 Uses of Inert Pair Effect	112
1.36.	FAJAN'S RULE	112
	1.36.1 The Postulates of Fajan's Rule	113
	1.36.2 Factors Affecting the Polarization of Anion	114
	1.36.3 Explanation of Fajans' Rule	114
	1.36.4 Examples and Applications of Fajans' Law	115
1.37.	BORN-HABER CYCLE	117
	1.37.1 Born – Haber cycle Description	118
	1.37.2 Born – Haber Cycle Equation	119
1.38.	COVALENT BOND	120
	1.38.1 Types of Covalent Bond	120
	1.38.2 Polar Covalent Bond	122
	1.38.3 Nonpolar Covalent Bond	122
	1.38.4 Polarization of Covalent Bonds	123

	1.38.5 Difference between Covalent and Ionic Bonds	123
1.39.	LEWIS' THEORY OF CHEMICAL BONDING	126
	1.39.1 Covalent Bonds	126
1.40.	VSEPR THEORY	127
	1.40.1 Vsepr Shapes	127
	1.40.1.1 Shape of BeF2	
	1.40.1.2 Shape of BCl3	
	1.40.1.3 Shape of SnCl2	
	1.40.1.4 Shape of CCl4	
	1.40.1.5 Shape of PF5	
1.41.	VALENCE BOND THEORY	132
	1.41.1 History of Valence Bond Theory	132
	1.41.2 Postulates of Valence Bond Theory	133
1.42.	NUMBER OF ORBITALS AND TYPES OF HYBRIDIZATION	134
	1.42.1 Applications of Valence Bond Theory	135
	1.42.2 Limitations of Valence Bond Theory	135
1.43.	COORDINATE BOND	137
1.44.	HYBRIDIZATION	138
	1.44.1 sp3 Hybridization	138
	1.44.2 dsp ² Hybridization	140
	1.44.3 sp3d2 Hybridization	141
	1.44.4 d ² sp ³ Hybridization	142
1.45.	SHAPES OF ORBITALS	142
1.46.	QUANTUM NUMBERS	143
	1.46.1 Properties of Quantum Numbers	144
1.47.	ZEEMAN EFFECT	146

K

\	*****	
1.48.	PAULI EXCLUSION PRINCIPLE	147
1.49.	HUND'S RULE	148
1.50.	AUFBAU PRINCIPLE	150
1.51.	ELECTRONIC CONFIGURATION OF ELEMENTS	151
	1.51.1 Writing Electron Configurations	151
	1.51.2 Electron Configurations are Useful For	152
1.52.	MOLECULAR ORBITAL THEORY	152
	1.52.1 Molecular Orbital Diagram of Oxygen	154
	1.52.2 Molecular Orbital Diagram of Nitrogen	155
1.53.	INTERMOLECULAR FORCES	158
	1.53.1 Hydrogen Bonding	158
	1.53.2 Van der Waals Forces	160
	1.53.3 Dipole Moment is the Mathematical Product of The	161
	Separation of the Ends of A Dipole and the Magnitude of The	
	Charges.	
	1.53.3.1 Characteristics of Dipole Moment	
	1.53.3.2 The formula of Dipole Moment	
	1.53.3.3 Uses of Dipole Moment	
1.54.	IMPORTANT MULTIPLE-CHOICE QUESTION	166

TEACHER'S CARE ACADEMY, KANCHIPURAM TNPSC-TRB- COMPUTER SCIENCE - TET COACHING CENTER

HEAD OFFICE: NO. 38/23, VAIGUNDA PERUMAL KOIL, SANNATHI STREET, KANCHIPURAM – 1. CELL: 9566535080 B.Off 2: 65C, Thillai Ngr(West), 4th Cross St, Trichy – 620018 B.Off 3: Vijiyaraghavachariar Memorial Hall(Opp to Sundar Lodge), Salem Trichy: 76399 67359 Salem: 93602 68118

UG TRB – CHEMISTRY – 2023-24

UNIT 1

INORGNIC CHEMISTRY

ATOMIC STRUCTURE & PERIODIC CLASSIFICATION

1.1. INTRODUCTION

Atom is the Basic Component Some Basic Term About Atom is Given Below:

- ✤ The particles constituting an atom are the electron, the proton, and the neutron.
- An atom is composed of two regions: the nucleus, which is in the center of the atom and contains protons and neutrons, and the outer region of the atom, which holds its electrons in orbit around the nucleus.
- Protons and neutrons have approximately the same mass, about 1.67 × 10⁻²⁴ grams, which scientists define as one atomic mass unit (amu) or one Dalton.
- Each electron has a negative charge (-1) equal to the positive charge of a proton (+1).
- Neutrons are uncharged particles found within the nucleus.
- The periodic table is a table that logically organizes all the known elements.
- Each row is named "period" where all of the elements have the same number of atomic orbitals.
- Each column is called "group" where the elements have the same number of electrons in the outer orbital.
- ◆ In this chapter will see more information about atomic structure and periodic classification

- Atoms are the extremely small particles that are the basic building blocks of ordinary matter.
- Atoms can join together to form molecules, which make up most objects. Different elements (e.g. oxygen, carbon, uranium) are made up of different types of atoms. An atom is the smallest unit of an element that will behave as that element.

1.1.1. Different Kinds of Atoms:

- Atoms, once thought to be the smallest building blocks of nature, are in fact made of smaller particles. Most often these particles are in balance, and as such the atom is stable and lasts nearly forever. Some atoms are out of balance. This can make them radioactive.
- Atoms are made of tiny particles called protons, neutrons and electrons. Protons and neutrons clump together to form a central nucleus. The electrons move in a cloud-like region around the nucleus.
- Stable: Most atoms are stable. Their protons, neutrons and electrons balance. Barring outside forces, a stable atom will stay the same indefinitely.
- Isotopes: Every atom is a chemical element, like hydrogen, iron or chlorine. Every element has cousins called isotopes. These have a different number of neutrons, but are otherwise the same. Having excess neutrons may make isotopes radioactive.
- Radioactive: Some atoms have too many neutrons in the nucleus, which makes them unstable. They're radioactive, giving off particles until they become stable.
- Ions: Atoms with extra or missing electrons are called ions. They have a positive or negative electric charge and are responsible for many chemical reactions.
- Antimatter: Every atomic particle has a twin anti-particle, with an opposite electric charge. Antimatter hydrogen atoms have been formed in the laboratory, containing an anti-proton and anti-electron. Antimatter is very rare and fragile.
- Atoms consist of an extremely small, positively charged nucleus surrounded by a cloud of negatively charged electrons. Although typically the nucleus is less than one tenthousandth the size of the atom, the nucleus contains more that 99.9% of the mass of the atom. Nuclei are made of positively charged protons and electrically neutral neutrons held together by a nuclear force. This force is much stronger than the electrostatic force that binds electrons to the nucleus, but its range is limited to distances of the order of 1 x 10-15 meters. It is shown in the Figure 1.

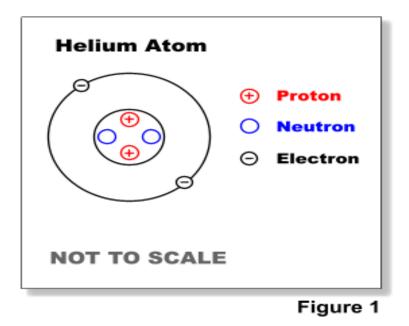
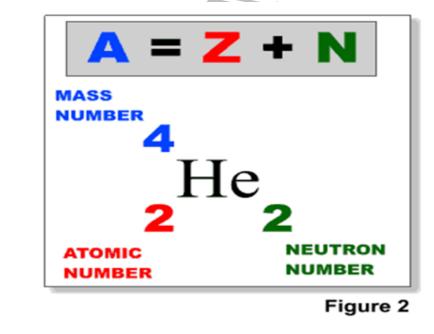



Figure 1: Representation of Helium atom

The number of protons in the nucleus is called the atomic number (Z), the atomic number defines the element. The number of neutrons in the nucleus is denoted by N. The mass number (A) of the nucleus is equal to Z + N is shown in the Figure 2. The mass of the nucleus in atomic mass units (amu) is usually slightly different from the mass number.

Atoms of the same element can have different number of neutrons and they are called isotopes of that element. As an example, hydrogen has three (3) isotopes: hydrogen-1 (hydrogen), hydrogen-2 (deuterium) and hydrogen-3 (tritium) is shown in the Figure 3.

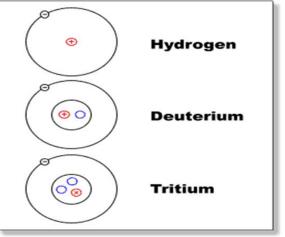


Figure 3

Figure 3: Indication of isotopes of Hydrogen

- At present there are 118 known elements which are typically displayed on the periodic table of the elements. Elements with atomic numbers 1 98 have all been shown to exist in nature while elements with atomic number 99 118 have only ever been produced artificially.
- Nuclides are often identified using the name of the element and the mass number (total number of protons and neutrons), i.e. lithiu-7, uranium-238, etc. (Figure 4).When referring to nuclides of the same element they are generally term isotopes i.e. uranium-238 & uranium-235. Radioactive nuclides or isotopes are called radionuclides or radioisotopes.

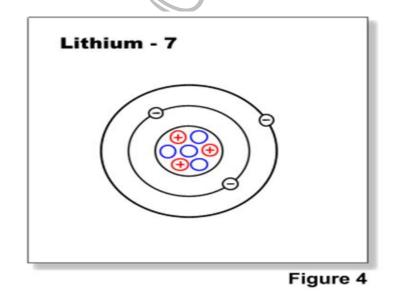
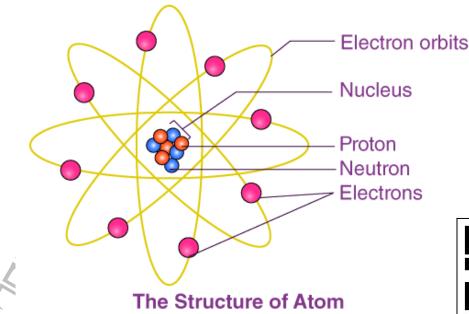



Figure 4: Indication of Lithium

 Among the elements there are 253 stable nuclides, and more than 3000 radioisotopes. The majority of the radioisotopes (>2400) are artificially produced and not presently found in nature.

1.2. ATOMIC STRUCTURE

- Atomic structure refers to the structure of an atom comprising a nucleus (centre) in which the protons (positively charged) and neutrons (neutral) are present. The negatively charged particles called electrons revolve around the centre of the nucleus is shown in the Figure 5.
- The history of atomic structure and quantum mechanics dates back to the times of Democritus, the man who first proposed that matter is composed of atoms. The study about the structure of an atom gives a great insight into the entire class of chemical reactions, bonds and their physical properties. The first scientific theory of atomic structure was proposed by John Dalton in the 1800s.
- The advances in atomic structure and quantum mechanics have led to the discovery of other fundamental particles.
- The discovery of subatomic particles has been the base for many other discoveries and inventions.
- The atomic structure of an element refers to the constitution of its nucleus and the arrangement of the electrons around it. Primarily, the atomic structure of matter is made up of protons, electrons and neutrons.
- The protons and neutrons make up the nucleus of the atom, which is surrounded by the electrons belonging to the atom. The atomic number of an element describes the total number of protons in its nucleus.

Figure 5: Pictorial representation of Structure of Atom

- The electron is by far the smallest: At 9.11 x 10-31 kg. It carries a negative electrical charge. Usually, it is bound to the positively charged nucleus due to the attraction created from the opposite electric charges. If the electrons carried by an atom are more or fewer than its atomic number, then the atom becomes respectively negatively or positively charged. A charged atom is known as an ion.
- Most of the mass of the atom comes from the protons and neutrons themselves, whereas electrons are almost 1/1837th times the weight of a proton or neutron. Protons and neutrons are both composed of other particles called quarks and gluons.
- The atomic number is the number of protons (equal to the number of electrons in a neutral atom) in the atom and the atomic mass number is the sum of the number of protons and neutrons in the atom.
- The atomic number (Z) is defined as the number of units of positive charges (protons) in the nucleus. It is the number of protons in the nucleus that determines the chemical properties of an atom.
- An atom may gain a positive or negative charge by either losing or gaining electrons respectively. Atoms may attach themselves to each other (of the same type or different type) to some atoms, the nucleus can change naturally. Such an atom is radioactive. In nature, there are some elements that are radioactive, like uranium or radium. In labs, scientists can produce radioactivity by bombarding atoms with smaller particles.
- The molecular mass of a substance is the sum of the atomic masses of all the atoms in a molecule of the substance. It is therefore the relative mass of molecule expressed in atomic mass units (u).
- Isotopes are atoms in a chemical element having different numbers of neutrons than protons and electrons. The atoms in a particular element have the same number of protons and electrons, but can carry varying numbers of neutrons.
- As instance, Hydrogen's atomic number is 1, i.e. its nucleus contains 1 proton. It also has one electron. The Hydrogen atom is neutral since it contains the same number of protons and electrons (as the positive and negative charges cancel each other out).
- However, approximately, one hydrogen atom out of 6000 contains a neutron in its nucleus. These atoms are still Hydrogen because they have one proton and one electron; they simply have a neutron that most hydrogen atoms do not carry. Hence, these atoms are called Isotopes.

- en that contains two neutrons. It's called Tritium,
- There's also an isotope of hydrogen that contains two neutrons. It's called Tritium, it doesn't occur naturally on earth, but it can easily be created.rm molecules of different compounds, to form matter.

7

1.3. HISTORY OF THE PERIODIC LAW

- The early years of the 19th century witnessed a rapid development in analytical chemistry the art of distinguishing different chemical substances—and the consequent building up of a vast body of knowledge of the chemical and physical properties of both elements and compounds.
- This rapid expansion of chemical knowledge soon necessitated classification, for on the classification of chemical knowledge are based not only the systematized literature of chemistry but also the laboratory arts by which chemistry is passed on as a living science from one generation of chemists to another. Relationships were discerned more readily among the compounds than among the elements; it thus occurred that the classification of elements lagged many years behind that of compounds. In fact, no general agreement had been reached among chemists as to the classification of elements for nearly half a century after the systems of classification of compounds had become established in general use.
- J.W. Döbereiner in 1817 showed that the combining weight, meaning atomic weight, of strontium lies midway between those of calcium and barium, and some years later he showed that other such "triads" exist (chlorine, bromine, and iodine [halogens] and lithium, sodium, and potassium [alkali metals]).
- J.-B.-A. Dumas, L. Gmelin, E. Lenssen, Max von Pettenkofer, and J.P. Cooke expanded Döbereiner's suggestions between 1827 and 1858 by showing that similar relationships extended further than the triads of elements, fluorine being added to the halogens and magnesium to the alkaline-earth metals, while oxygen, sulfur, selenium, and tellurium were classed as one family and nitrogen, phosphorus, arsenic, antimony, and bismuth as another family of elements.
- Attempts were later made to show that the atomic weights of the elements could be expressed by an arithmetic function, and in 1862 A.-E.-B. de Chancourtois proposed a classification of the elements based on the new values of atomic weights given by Stanislao Cannizzaro's system of 1858. De Chancourtois plotted the atomic weights on the surface of a cylinder with a circumference of 16 units, corresponding to the approximate atomic weight of oxygen. The resulting helical curve brought closely related elements onto corresponding points above or

below one another on the cylinder, and he suggested in consequence that "the properties of the elements are the properties of numbers," a remarkable prediction in the light of modern knowledge.

1.4. CLASSIFICATION OF THE ELEMENTS

- In 1864, J.A.R. Newlands proposed classifying the elements in the order of increasing atomic weights, the elements being assigned ordinal numbers from unity upward and divided into seven groups having properties closely related to the first seven of the elements then known: hydrogen, lithium, beryllium, boron, carbon, nitrogen, and oxygen. This relationship was termed the law of octaves, by analogy with the seven intervals of the musical scale.
- Then in 1869, as a result of an extensive correlation of the properties and the atomic weights of the elements, with special attention to valency (that is, the number of single bonds the element can form), Mendeleyev proposed the periodic law, by which "the elements arranged according to the magnitude of atomic weights show a periodic change of properties." Lothar Meyer had independently reached a similar conclusion, published after the appearance of Mendeleyev's paper.

1.5. THE FIRST PERIODIC TABLE

- Mendeleyev's periodic table of 1869 contained 17 columns, with two nearly complete periods (sequences) of elements, from potassium to bromine and rubidium to iodine, preceded by two partial periods of seven elements each (lithium to fluorine and sodium to chlorine), and followed by three incomplete periods. In an 1871 paper Mendeleyev presented a revision of the 17-group table, the principal improvement being the correct repositioning of 17 elements. He, as well as Lothar Meyer, also proposed a table with eight columns obtained by splitting each of the long periods into a period of seven, an eighth group containing the three central elements (such as iron, cobalt, nickel; Mendeleyev also included copper, instead of placing it in Group I), and a second period of seven. The first and second periods of seven were later distinguished by use of the letters "a" and "b" attached to the group symbols, which were the Roman numerals.
- With the discovery of the noble gases helium, neon, argon, krypton, radon, and xenon by Lord Rayleigh (John William Strutt) and Sir William Ramsay in 1894 and the following years, Mendeleyev and others proposed that a new "zero" group to accommodate them be added to the periodic table. The "short-period" form of the periodic table, with Groups 0, I, II,III, IV, V, VI, VII VIII, became popular and remained in general use until about 1930.

UNIT I- Inorganic Chemistry and Chemical Bonding

C) Phosphorous

1.54. Important Multiple-Choice Question:

- 1. The element having tetra atomic atomicity is
 - A) Helium B) Nitrogen
- 2. Who was the first to propose Atomic theory?
 - A) J J Thomson B) Ruther ford C) John Dalton

3. What is common among Lithium, Sodium and Potassium?

- A) These have one electron in their outermost shell
- B) There are alkaline earth metals
- C) These cannot form oxides
- D) These are inert elements
- 4. Which of the following statements does not form a part of Bohr's model of hydrogen atom?
 - A) Energy of the electrons in the orbit is quantized
 - B) The electron in the orbit nearest the nucleus has the lowest energy
 - C) Electrons revolve in different orbits around the nucleus
 - D) The position and velocity of the electrons in the orbit cannot be determined simultaneously
- 5. Identify the wrong statement in the following

A) The atomic radius of the elements increases as one moves down the first group of the periodic table

B) The atomic radius of the elements decreases as one moves across from left to right in the 2nd period of the periodic table

C) Amongst isoelectronic species, the smaller the positive charge on the cation, the smaller is the ionic radius

D) Amongst isoelectronic species, the greater the negative charge on the anion, larger is the ionic radius

6. Which of the following properties of atom could be explained correctly by Thomson Model of atom?

A) Overall neutrality of atom

B) Spectra of hydrogen atom

D) Chlorine

D) Neils Bohr

- C) Position of electrons, protons and neutrons in atom
- D) Stability of atom

7. The energy of an electron in first Bohr orbit of H-atom is -13.6 eV. The possible energy value of electron in the excited state of Li^{2+} is

A) – 122.4 eV B) 30.6 eV C) – 30.6 eV D) 13.6 eV

8. Electronic configuration of the outer shell of the element Gd with atomic number 64 is

- A) $4f^4 5d^5 6s^1$ B) $4f^3 5d^5 6s^2$ C) $4f^5 5d^4 6s^1$ D) $4f^7 5d^1 6s^2$
- 9. If both the K and L shells are full, what would be the atomic number of that element?
 - A) 20 B) 14 C) 10
- 10. Which of the following statements about the electron is incorrect?
 - A) It is a constituent of cathode rays
 - B) The mass of an electron is equal to the mass of a neutron
 - C) It is a basic constituent of all atoms
 - D) It is a negatively charged particle

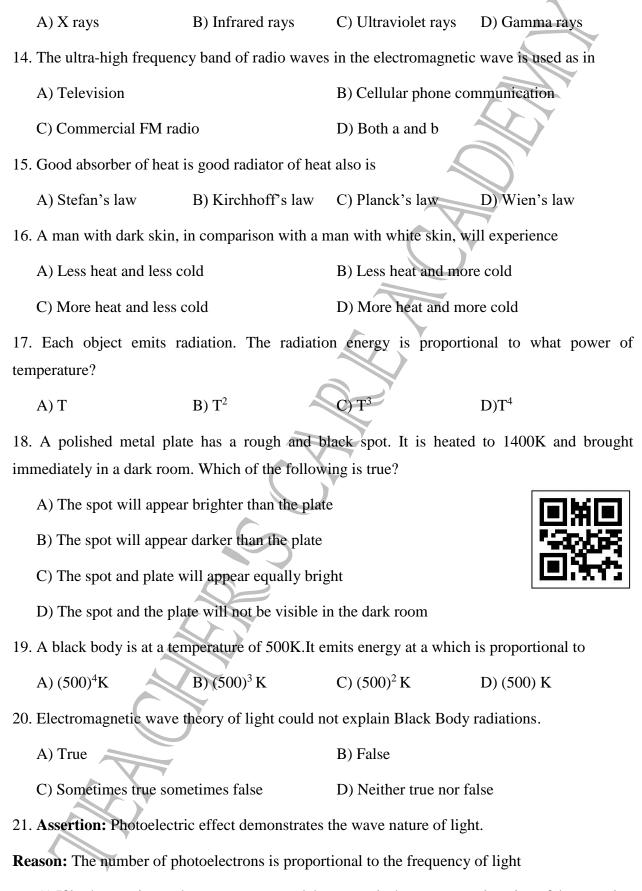
11. The ratio of the amplitude of the magnetic field to the amplitude of the electric field for electromagnetic wave propagation in a vacuum is equal to

- A) Unity
- B) Speed of light in vacuum
- C) Reciprocal of the speed of light in vacuum
- D) The ratio of magnetic permeability to electrical susceptibility in a vacuum.
- 12. Which properties amount the following is false about electromagnetic waves?

A) The energy in an electromagnetic wave is divided equally between electric and magnetic vectors.

B) Both electric and magnetic field vectors are parallel to each other and perpendicular to the direction of propagation of the wave.

C) These waves do not require any material medium for propagation


D) Both electric and magnetic field vectors attain the maxima and minima at the same place and the same time

	4.	Ū,		100
	25	١Ľ	62	
22			5.4	
			1	
1		ъ.		

D) 16

TEACHER'S CARE ACADEM

13.To which part of the spectrum does an EM wave belong if the energy of the wave is of the order of 15 KeV.

A) If both assertion and reason are true and the reason is the correct explanation of the assertion

Teacher's Care Academy

HEAD OFFICE : 38/23, Vaigundaperumal Koil Street, Kancheepuram-1.

CONTACT : 044-2723 5080; 95665 35080; 9786269980

TNPSC/PG-TRB/TET/SPL. TEACHER (DRAWING) TRB COMPUTER SCIENCE - COACHING CENTRE (Classes : Saturday, Sunday & Govt. Holidays)

BRANCH OFFICE :

Branch Office 1 : 65C, Thillai Nagar (West), 4th Cross Street, Trichy – 620018.

Branch Office 2 : Vijiyaraghavachariar Memorial Hall (Opp to SundarLodge), Salem- 636007.

CONTACT : TRICHY: 7639967359; SALEM: 9360268118

UG TRB – 2022-23

CHEMISTRY

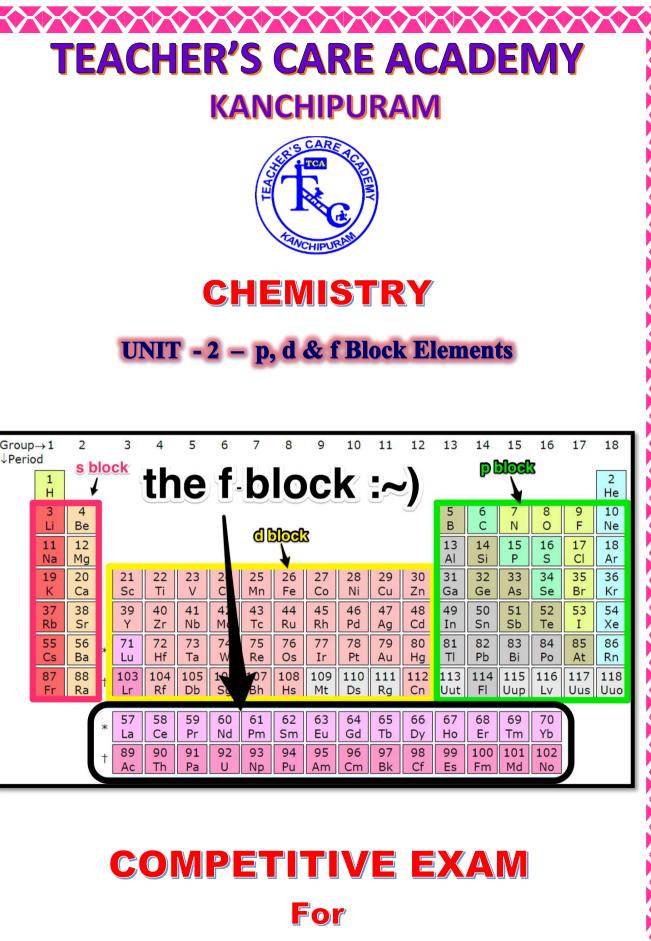
UNIT 1

ATOMIC STRUCTURE

A.	мо	RE INFORMATION
	Website	: www.tcaexamguide.com
AK	Play Store	: tcaexamguide
1 L	YouTube	: Teacher's Care Academy
	Mail	: tcaexamguide@gmail.com
	f facebook	: tcaexamguide
	O Whatsapp	: 95665 35080;
Mot	ile / Office :	97862 69980; 93602 68118; 76399 67359

TEACHER'S CARE ACADEMY

38/23, Vaigundaperumal Koil Street, Kanchipuram-1 Mobile : 95665 35080, 97862 69980 Help Line Numbers : 9360268118,7639967359


UNIT-2

p-BLOCK ELEMENTSs, d-BLOCK & f-BLOCK ELEMENTS

Your Success is Our Goal....

Website : www.tcaexamguide.com

Mobile App : tcaexamguide

UG TRB – 2023-24

S.N.	CHAPTER	P.N.	
2.1.	p- Block Elements	1	
	2.1.1. Occurrence of the p-Block Elements	3	
	2.1.2. General characteristics of p-block Elements	3	
	2.1.2.1. Electronic Configuration		
	2.1.2.2. Group 13 Elements - The Boron Family		
2.2.	Some Important Special Characteristics of p-block Elements	4	
	2.2.1. Chemical Behaviour	4	
	2.2.2. Size and other Properties Which Depend Upon Size	5	
	2.2.3. Absence of d-Orbital	5	
2.3.	Position of p-block Elements in the Periodic Table		
	2.3.1. Electronic Configuration of p-Block Elements	7	
2.4.	Silicones - Structure and Uses	8	
2.5.	Anomalous Nature of Fluorine	9	
2.6.	Interhalogen Compounds or Interhalogens	10	
2.7.	Uses of p-block Elements	10	
2.8.	Specific uses of p-block Elements	11	
2.9.	Diborane	13	
	2.9.1. Properties of Diborane	14	
	2.9.2. Preparation of Diborane	15	
	2.9.2.1 Chemical Reactions		
	2.9.3. Uses and Applications of Diborane	16	
2.10.	Borax	16	
	2.10.1. Natural Sources of Borax	16	
	2.10.2. Household Uses of Borax	17	

	2.10.3. Borax Reaction	17
	2.10.4. Medical Research	18
	2.10.5. Warning	18
2.11.	Borazine	20
	2.11.1. Origin of Borazine	20
	2.11.2. Structure of Borazine	21
	2.11.3. Physical Properties of Borazine Compounds	22
	2.11.4. Types of Compounds	24
	2.11.5 Chemical Properties of Borazine Compounds	24
	2.11.6. Chemical Reactions of Borazine	25
	2.11.7. Synthesis of Borazine	26
	2.11.8. Characteristics of Aromatic Compounds Include	26
	2.11.9. Uses of Borazine	27
2.12.	Alums	28
	2.12.1 Types of Alum	30
	2.12.2 Examples of Alums	31
	2.12.3. Preparation of Alum	33
	2.12.4 Uses of Alum	34
2.13.	Alloys of Aluminium	36
	2.13.1. Various alloys of Aluminium	37
	2.13.2. Identifying Aluminum Alloys	38
	2.13.3. Strongest Aluminum Alloy	39
	2.13.4. Aluminum Alloy Classification	39
	2.13.5. Uses of Aluminium Alloys	39
	2.13.6. Engineering use and Aluminium Properties	40
	2.13.6.1. Automotive Alloys	

	2.13.6.2. Aluminium Alloys Versus Types of Steels	
	2.13.6.3. Heat Sensitivity Considerations	
	2.13.6.4. Household Wiring	
	2.13.6.5. Marine Alloys	
	2.13.6.6. Aerospace Aluminium Alloys	
	2.13.6.7 Potential use as Space Materials	
2.14.	Allotropes of Carbon	49
	2.14.1. Allotropes of Carbon	50
	2.14.2. Bonding in Carbon	51
2.15.	Graphite:	52
	2.15.1. Density	54
	2.15.1.1. Chemical Activity	
	2.15.2. Graphite is of two forms: α and β .	55
	2.15.2.1. Some special characteristics of Graphite	
	2.15.2.2 Properties of Graphite	
	2.15.2.3 Uses	
2.16.	Graphene	57
2.17.	Diamond	57
	2.17.1 Chemical Bonding	58
	2.17.2 Physical Properties of Diamond	
2.18.	Nanotubes	59
	2.18.1 Carbon Nanobuds	60
2.19.	Fullerene	60
2.20.	Other Carbon Allotropes	62
	2.20.1. Variability of Carbon	63
	2.20.2. Other possible Allotropes of Carbon	64

2.21.	Chemistry of Oxides of Carbon	66 66		
	2.21.1 Carbon Oxide Properties			
	2.21.2. Carbon Oxide Substances	67		
	2.21.1.1 Carbon Monoxide			
	2.21.1.2 Carbon Dioxide			
	2.21.1.3 Oxides and Ozonides of Fullerene			
	2.21.1.4 Carbon Oxide Polymers			
	2.21.1.5 Additional Oxides			
	2.21.3 Utilization of Carbon Oxides	68		
2.22.	Oxides of Silicon	69		
	2.22.1 Production of Silicon Dioxide	69		
	2.22.1.1 Silicon Dioxide Reactions			
	2.22.1.2 Uses of Oxide of Silicon			
2.23.	Compounds of Nitrogen	72		
	2.23.1 Biological and Physiological Significance	74		
2.24.	Nitrogen Fixation	76		
	2.24.1. Different Ways of Nitrogen Fixation	77		
	2.24.2. Biological Nitrogen Fixation	77		
	2.24.3. Symbiotic Nitrogen Fixation	78		
	2.24.4. Significance of Nitrogen Fixation	79		
2.25.	Phosphine (PH ₃)	79		
	2.25.1. Structure of Phosphine	80		
	2.25.2. Preparation and Occurrence	80		
	2.25.3 Occurrence	81		
	2.25.4 Applications	81		

2.26.	Compounds of Phosphorous	82					
	2.26.1. Preparation of Phosphorus Pentoxide	84					
	2.26.2. Structure of Phosphorus Pentoxide	84					
	2.26.3 Properties of Phosphorus Pentoxide	85					
	2.26.4. Uses of Phosphorus Pentoxide	85					
2.27.	Analytical Chemistry	86					
	2.27.1 Biological and Physiological Significance	86					
2.28.	d- Block Elements	88					
	2.28.1 Reason for d block elements are called as Transition Elements	88					
	2.28.2 General characteristics of d – block Elements	89					
	2.28.3 Salient Features of Oxidation States of Transition Elements	91					
2.29.	Alloys of Iron						
	2.29.1. Iron Alloys and Materials	96					
	2.29.2. Specifications	97					
	2.29.3. Applications	97					
2.30.	Alloys of Copper	98					
	2.30.1. Selection of Copper and Copper Alloys	98					
	2.30.2. Properties of Alloys	98					
	2.30.3 Different Types of Metal Alloys	99					
	2.30.4. Classification of Cast Copper Alloys	101					
2.31.	Alloys of Nickel						
	2.31.1. Properties of Nickel						
	2.31.2. Common Types of Nickel Alloys						
	2.31.3 Properties of Nickel Alloys	107					
	2.31.4. Uses	107					

2.32.	Alloys of Chromium									
2.33.	Gemstones									
	2.33.1 Ruby Gemstones									
	2.33.1.1 Properties of Ruby									
	2.33.1.2. Benefits of Ruby									
	2.33.2. Emerald Gemstones	112								
	2.33.2.1. Properties of Emerald									
	2.33.2.2. Benefits of Emerald									
	2.33.3. Sapphire Gemstone	113								
	2.33.3.1. Types of Blue Sapphire									
	2.33.3.2 Benefits of Sapphire									
2.34.	General Characteristics of f block Elements									
	2.34.1. Position of f-block Elements in the Periodic Table									
	2.34.2. Classification of F Block Elements	117								
	2.34.3. Properties of F block Elements	117								
	2.34.4. General Characteristics of f-block Elements and Extraction	118								
	2.34.5. Cause of lanthanide Contraction	121								
	2.34.6. Consequences of Lanthanide Contraction									
2.35.	The Actinide Series (5f block Elements)									
	2.35.1. Common properties of Actinides									
	2.35.2. General Characteristics of Actinide Series									
	2.35.3 Cause of Actinide Contraction									
	2.35.4. Consequences of Actinide contraction									
	2.35.5. Difference between Lanthanides and Actinides	127								
	2.35.6. Similarities between Lanthanides and Actinides									

2.36.	Ultraviolet–Visible Spectroscopy	129						
	2.36.1. Spectral properties of Lanthanides	132						
	2.36.2. Spectral Properties of Actinides	133						
2.37.	Separation of Lanthanides	133						
	2.37.1. Magnetic properties lanthanides and Actinides	137						
	2.37.2 Some important properties of lanthanides and Actinides	137						
	2.37.3. Differences between lanthanides and Actinides	139						
	2.37.4. Similarities between Lanthanides and Actinedes	139						
	2.37.5. Uses of lanthanides and their Compounds	141						
	2.37.6. Separation of Actinides	142						
	2.37.6.1. Separation of Actinide Elements							
	2.37.7. Applications of Actinides	147						
2.38.	Important Multiple-Choice Questions							
		150						
		130						

TEACHER'S CARE ACADEMY, KANCHIPURAM TNPSC-TRB- COMPUTER SCIENCE - TET COACHING CENTER

HEAD OFFICE: NO. 38/23, VAIGUNDA PERUMAL KOIL, SANNATHI STREET, KANCHIPURAM – 1. CELL: 9566535080 B.Off 2: 65C, Thillai Ngr(West), 4th Cross St, Trichy – 620018 B.Off 3: Vijiyaraghavachariar Memorial Hall(Opp to Sundar Lodge), Salem Trichy: 76399 67359 Salem: 93602 68118

UG TRB – CHEMISTRY – 2023-24

INORGNIC CHEMISTRY - UNIT 2

'p, d and f' Block Elements

2.1. p- Block Elements:

- p- block elements are those in which the last electron enters any of the three p-orbitals of their respective shells. Since a p-subshell has three degenerate p-orbitals each of which can accommodate two electrons, therefore in all there are six groups of p-block elements.
- P-block elements are shiny and usually a good conductor of electricity and heat as they have a tendency to lose an electron. You will find some amazing properties of elements in a p-block element like gallium. It's a metal that can melt in the palm of your hand. Silicon is also one of the most important metalloids of the p-block group as it is an important component of glass.
- p- block elements are nothing but the element in which the last electron enters the outermost p-subshell. P block starts from the 13th group and goes till the 18th group in the periodic table is shown in the Figure 1.
- Coal is used in villages to cook food. It is nothing but a p-block element i.e., carbon. diamonds used for making beautiful ornaments are also made up of carbon. Aluminium foil made up of aluminium is also made up of the p-block element.
- The p-block is the region of the periodic table that includes columns IIIA to column VIIIA and does not include helium. There are 35 p-block elements, all of which are in p orbital with valence electrons. The p-block elements are a group of very diverse elements with a wide range of properties.

H H															He
Li Be										₿ box	6 C	N Ner	Ő	F	Ne
Na Mg										AI AI	Si Si	Prosperson	16 S	CI CI	Ar Ar
K Ca Sc	Ti Ti	V V	Čr	Mn Mn	Fe	C0	28 Ni	Cu cu	30 Zn	Ga	Ge	AS	Se Se	Br	
Rb Sr Y	Žr Zr	Nb	Mo	TC Tc	Ru	Rh	Pd Pd	Åg	48 Cd	49 In	Sn.	Sb Avenuely	Te Te	53	Xe
55 Ba La	72 Hf	Ta Ta	74 W Turgeten	Re Re	76 OS 0.81	77 r	Pt Puteren	Au But	Hg	81 TI Data	Pb	Bi	Po	At At	Rn
Fr Ra Ac	104 Rf	105 Db	Sg	Bh Bh	HS HS	Mt Mt	DS	Rg	112 Cr	Nh	FI FI	MC Monuter	LV	117 Ts	0g
	Če	Pr	Nd 60	Pm	Sm 82	Ĕu	Gd 64	fb	by	Ho	Ĕr	۳m	Yb	Lu Lu	
	90 Th Those	91 Paterterat	92 U Uusan	93 Np	94 Pu	95 Am	96 Cm Curran	97 Bk	98 Cf Cateraan	99 Es	100 Fm	101 Md	102 NO	103 Lr	

- The elements p-block are so-called because their valence electrons are filled in an orbital p. These are often called Standard Components, in order to differentiate them from the sequence of transformation and internal transformation.
- Non-metals are on the extreme right side of the periodic table, except for hydrogen, found in the upper left corner. The 17 non-metal elements are: Hydrogen, Helium, Carbon, Nitrogen, Oxygen, Fluorine, Neon, Phosphorus, Sulphur, Chlorine, Argon, Selenium, Bromine, Krypton, Iodine, Xenon, and Radon.
- Usually non-metal is brittle when it is solid and typically has low thermal conductivity and electrical conductivity. Chemically, non-metals tend to have relatively high energy from ionization, contact with electrons, and electron negativity. As they react with other elements and chemical compounds, they receive or exchange the electrons.
- ✤ The general electronic external configuration for p-block components is ns² np⁽¹⁻⁶⁾.
- The property of p-block element that gives it the ability to form covalent bonds with other atoms of same element (resulting in the formation of a chain of atoms) is called catenation. Carbon exhibits the property of catenation to a great extent. For example, carbon atoms can combine to each other to form long chains, branched chains and closed rings.
- In p-block elements, a lot of variation in properties of elements in a group is observed.
 Because, difference in inner core of electronic configuration greatly influences the physical and chemical properties of elements.

2.1.1. Occurrence of the p-Block Elements:

Some elements occur free as well as in the combined state in nature. For example, elements such as oxygen, nitrogen, carbon, sulphur occur in both the form. Noble gases occur in free state only. All other elements usually occur in combined state.

2.1.2. General characteristics of p-block Elements:

2.1.2.1. Electronic Configuration:

The general electronic configuration of p-block elements is ns² np¹⁻⁶.

- 1) These elements include metals and non-metals with a few semi metals (Metalloids).
- 2) Most of them form covalent compounds.
- 3) These elements possess relatively higher ionization energy and the value tends to increase along the period but decrease down the group.
- Most of the elements show negative (except some metals) as well as positive oxidation states (except Fluorine).
- 5) One of the familiar characteristics of p-block elements is to show inert pair effect i.e. the tendency of being less availability for ns electron in bonding. The inert pair effect increases down the group with the increase in atomic number.

2.1.2.2. Group 13 Elements - The Boron Family:

The group 13(IIIA) elements are Boron, aluminium, gallium, indium and thallium.

- 1) Boron is a relatively rare element, accounting for only about 0.001% of the earth's crust by mass.
- 2) Aluminium is the most important of 13th group elements.
- 3) Gallium is remarkable for its unusually low melting point (29.7°C) and therefore generally exist as a liquid at room temperature. Its most important use is in making gallium arsenide. This is a semi conductor material employed in the manufacture of diode lasers for laser printers, compact -disc players and fibre optic communication devices.
- Indium is also used in making semi-conductor devices, such as transistors and electrical resistance thermometers called thermistors.
- 5) Thallium is extremely toxic and has no commercial use.

i) Boron:

It has Atomic Number of 5 and the Electronic Configuration is given as: [He] 2s² 2p¹. It belongs to Group Number: 13 and Period Number: 2

ii) Aluminium:

It has Atomic Number of 13 and the Electronic Configuration is given as [Ne]
 3s2 3p1. It belongs to Group Number: 13 and Period Number: 3

iii) Gallium:

It has Atomic Number of 31 and the Electronic Configuration is given as [Ar] 3d¹⁰4s²4p¹. It belongs to Group Number: 13 and Period Number: 4

iv) Indium:

It has Atomic Number of 49 Electronic Configuration is given as [Kr] 4d¹⁰ 5s² 5p¹.
 It belongs to Group Number: 13 and Period Number: 5

v) Thallium:

It has Atomic Number: 81 and the Electronic Configuration is given as [Xe] 4f¹⁴ 5d¹⁰ 6s² 6p¹. It belongs to Group Number: 13 and Period Number: 6

2.2. Some Important Special Characteristics of p-block Elements:

- 1. Boron, carbon, nitrogen, oxygen, fluorine and neon head these groups of p block elements. Their valence shell electronic configuration is ns2 np1-6 where n= 2-7.
- The maximum oxidation state shown by a p block element is equal to the sum of the valence electrons or the group number minus 10. This is called group oxidation state. Beside group oxidation state, p block elements show a number of other oxidation states.
- 3. In boron, carbon and nitrogen families, the group oxidation state is the most stable for the lighter elements in the group. A lower oxidation state which is 2 units less than the group oxidation state becomes progressively more stable for the heavier elements in each group.
- The group oxidation state of group 13 elements is +3 but +1 oxidation state is most stable for thallium. The group oxidation state for group 14 elements is +4 but +2 oxidation state is most stable for lead.

Trend of occurrence of oxidation state two units less than the group oxidation state is called inert pair effect and becomes more prominent as we move down the group.

2.2.1. Chemical Behaviour:

1. p-block is the only one which contains metals, non-metals and metalloids. The common metal among p block elements is: aluminium, gallium, indium and thallium

(group 13), tin and lead (group 14) and bismuth (group 15). The common metalloids are silicon, germanium, arsenic, antimony and tellurium while all the remaining elements are non-metals.

- 2. Non-metals have higher ionization enthalpies and higher electronegativity than those of metals. Therefore, non-metals readily form anions.
- **3.** The compounds formed by the union of highly reactive metals with non-metals are generally ionic because of large differences in their electro negativities.
 - Compounds formed by the union of non-metals themselves are largely covalent in character due to small differences in their electronegativities. Oxides of non-metals are either acidic or neutral; the oxides of metals are always basic in nature.
 - More electropositive the metal, the more basic is its oxide and more electronegative the non-metal, more acidic is its oxides. Among p-block elements, the acidic character of the oxides increases or basic character decreases along a period. The basic character of oxide increases or the acidic character decreases down the group.
 - First member of each group of p block elements differ from its exceeding members of their respective group.

The two main reasons for the differences are:

- 1. Size and other properties which depends upon size.
- 2. Absence of d orbital in their valence shell.

2.2.2. Size and other Properties Which Depend Upon Size:

 Due to small size, high electronegativity and high ionization enthalpy, the first element of each group of p-block elements differs from rest of the members of the respective groups.

2.2.3. Absence of d-Orbital:

- The absence of d-orbitals in the elements of 2nd period and the presence of d orbital in the heavier elements.
- a) Maximum Covalency of Four:
 - The first member of each group has 4 orbitals in the valence shell for bonding and hence can accommodate at the maximum 4 pairs or 8 electrons. These elements show a maximum covalency of four. Elements of 3rd period of p-block elements have vacant 3d orbitals lying between 3p and 4s level of energy. Using these d-

orbitals, the elements of 3rd period can accommodate more electrons and hence can expand their covalency beyond 4.

- 1) Boron forms only $[BF_4]^-$ or $[BH_4]^-$ ion while AI gives $[AIF_6]^{3-}$ ion.
- 2)Carbon forms only tetrahalides whereas other members form hexahalides, i.e. [SiF₆]²⁻, [GeCl₆]²⁻, [SnCl₆]²⁻.
- Nitrogen forms only NF₃ while phosphorus forms both trihalides i.e., PF₃, PCl₃ and pentahalides i.e., PF₅ and PCl₅.
- 4) Fluorine does not form FCl₃ having 10 valence electrons while chlorine forms CIF₃.

b) Reactivity:

- Due to presence of d orbital, the elements of 3rd period are more reactive than elements of 2nd period which do not contain d-orbitals.
- Tetrahalides of carbon are not hydrolyzed by water while tetrahalides of other elements of group 14 are readily hydrolyzed. This hydrolysis involves the nucleophilic attack by water molecules and the pair of electrons provided by water is accommodated in the vacant d-orbitals.

c) Tendency to form Multiple Bonds:

- 1. The presence of d-orbitals also influences the chemistry of heavier elements in a number of other ways.
- 2. The combined effect of size and availability of d-orbital affects the ability of these elements to form π -bonds.
- 3. The first member of each group differs from the heavier elements in its ability to form pπ-pπ multiple bonds either with itself or with the other elements of the second period. This type of π-bonding is not strong in case of heavier p-block elements. The heavier elements also form π-bonds but this involves d-orbitals.
 - For Example: In SO₂, one of the two π-bonds between S and O involves dπ-pπ bonding while the other involves pπ-pπ bonding. In SO₃ two of the three π-bonds involved dπ-pπ bonding while the third one involves pπ-pπ bonding. In these dπ-pπ bonds, a half filled 3d orbital of sulphur overlaps with the half-filled 2p orbitals of oxygen.
 - > Since d orbitals are of higher energy then p-orbitals; therefore, they contribute less towards the overall stability of the molecule as compared to $p\pi$ - $p\pi$ bonding

7

between elements of 2nd period. But at the same time, such type of bonding may increase the coordination number in species of heavier elements in the same oxidation state.

2.3. Position of p-block Elements in the Periodic Table:

- In the elements of p-block, the last electron enters the furthest p orbital. They have 3 to 8 electrons in the peripheral shell. As we realize that the quantity of p orbitals is three and, therefore, the most extreme number of electrons that can be obliged in an arrangement of p orbitals is six. Consequently, there are six groups of p-block elements in the periodic table numbering from 13 to 18.
 - I. First group: group IIIA called as Boron group
 - II. Second group: group IVA called as Carbon group
 - III. Third group: group VA called as Nitrogen group
 - IV. Fourth group: group VIA called as Chalcogens
 - V. Fifth group: group VIIA called as Halogens
 - VI. Sixth group: zero group or group 18 called as Inert or Noble gasses group.
- In the p-block, all the three sorts of elements are available, i.e. the Metals, Non-Metals, and Metalloids. The crisscross line in the p-block isolates every one of the elements that are metals from those that are non-metals. Metals are found on the left of the line, and non-metals are those on the right. Along the line, we discover the metalloids. Because of the nearness of a wide range of elements, the p-block demonstrates a great deal of variety in properties.
- You must have seen that coal is used in villages to cook food. It is nothing but a Pblock element i.e., carbon. Diamonds used for making beautiful ornaments are also made up of carbon. Aluminium foil made up of aluminium is also made up of the p block element.

2.3.1. Electronic Configuration of p-Block Elements:

 The general electronic configuration of p-block elements is ns²np¹⁻⁶(except He). Whereas the inner core electronic configuration may differ. Just because of this difference in the inner core, there are changes in both physical and chemical properties of the elements.

- The general electronic configuration appeared by elements from group13 to 18 of pblock is as given underneath: -
 - ➢ Group 13 (Boron family):- ns² np¹
 - Group 14 (Carbon family):- ns² np²
 - ➢ Group 15 (Nitrogen family):- ns² np³
 - Group 16 (Oxygen family):- ns² np⁴
 - Group 17 (Halogen family):- ns² np⁵
 - ➢ Group 18 (Noble gases):- ns² np⁶ (except Helium)
- The general electronic configuration of Helium is 1s². Because of their particular electronic configuration p-block elements demonstrate a great deal of variety in properties.
- The oxidation state of elements in p block is maximum when it is equal to a total number of valence electrons i.e., the sum of S and P electrons. One of the most interesting facts about the p-block elements is that it contains both non-metals and metalloids.

2.4. Silicones - Structure and Uses:

- The silicones are a group of organosilicon polymers. They have a wide variety of commercial uses.
- The complete hydrolysis of SiCl₄ yields silica SiO₂, which has a very stable threedimensional structure. The fundamental research of F.S. Kipping on the hydrolysis of alkyl-substituted chlorosilanes led, not to the expected silicon compound analogous to a ketone, but to long-chain polymers called silicones is shown in the Figure 2.

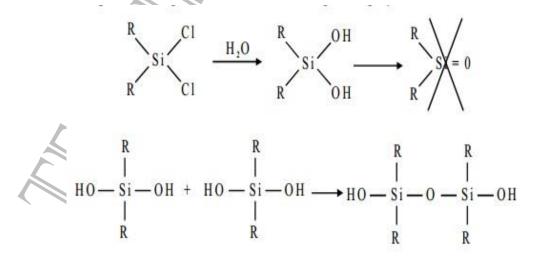


Figure 2: Structure of silicones

 The starting materials for the manufacture of silicones are alkyl-substituted chlorosilanes. Thus, the hydrolysis of trialkylmonochlorosilane R₃SiCl yields hexa- alkyl siloxane is shown in the Figure 3.

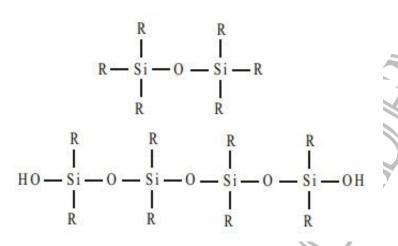
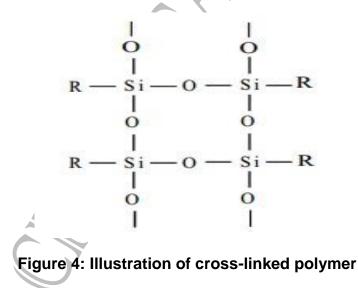



Figure 3: Structure of hexa-alkyl siloxane

- The dialkyldichlorosilane R₂SiCl₂ on hydrolysis gives rise to straight chain polymers and, since an active OH group is left at each end of the chain, polymerization continues and the chain increases in length.
- The hydrolysis of alkyl trichlorosilane RSiCl₃ gives a very complex cross-linked polymer.
 Illustration of cross-linked polymer is given in the Figure 4.

2.5. Anomalous Nature of Fluorine:

 Fluorine is the most reactive element among halogen. This is due to the minimum value of F-F bond dissociation energy. Fluorine decomposes cold dilute alkalis liberating OF₂ and with conc. alkali, O₂ is liberated. Under similar conditions, the other halogens will give rise to the hypohalites and halates respectively.

2.38. UNIT II (p-block elements) – Important Multiple-Choice Questions:

<u>2.30. UNIT II (p-bi</u>				<u>///5.</u>
1. What is the correc	t order of electron af	ffinity among O, F and	ł Cl?	
A) O < Cl < F	B) O < F < Cl	C) F < O < Cl	D) Cl < O < F	
2. A yellow precipita	te is formed upon the	e addition of aqueous	silver nitrate to a se	olution
of?			44	
A) Orthophosphate	,	B) Metaphosphate		
C) Pyrophosphate		D) Phosphite	\bigcirc	
3. Which among the	se has the highest bo	ond angle?		
A) NH ₃	B) NF ₃	C) BF ₃	D) PH₃	
4. How many S-S bo	onds are there in tetra	athionate ion?		
A) 2	B) 3	C) 4	D) 5	
5. H ₂ S is more acidio	than H ₂ O because	Lr.		2003
A) Oxygen is more	electronegative than	n sulphur		凹流行
B) Atomic number	of sulphur is higher t	han oxygen		
C) H — S bond dis	sociation energy is lo	ess as compared to H	I — O bond	
D) H — O bond dis	sociation energy is I	ess also compared to	H — S bond	
6. Helium is preferre	d to be used in ballo	ons instead of hydrog	en because it is	
A) Incombustible		B) Lighter than hyd	Irogen	
C) More abundant	than hydrogen	D) Non-polarizable	1	
7. Among the 15th	n group elements,	as we move from i	nitrogen to bismut	h, the
	es less pronounced	and trivalency becom	es more pronounce	ed due
to				
A) Nonmetallic cha	iracter	B) Inert pair effect		
C) High electroneg	ativity	D) Large ionization	energy	
8. Assertion: In p-b	lock elements, a lot (of variation in properti	es of elements in a	aroup

8. **Assertion:** In p-block elements, a lot of variation in properties of elements in a group isobserved.

Reason: Difference in inner core of electronic configuration greatly influence the physical and chemical properties of elements

A) Both assertion and reason are correct and the reason is the correct explanation of the assertion

B) Both assertion and reason are correct and the reason is not the correct explanation

of the assertion

C) Assertion is correct but the reason is incorrect

- D) Both assertion and reason are incorrect
- 9. Ionic radii (in Å) of As³⁺, Sb³⁺ and Bi³⁺ follow the order

A) $As^{3+}> Sb^{3+}> Bi^{3+}$ B) $Sb^{3+}> Bi^{3+}>As^{3+}$

- C) $Bi^{3+}> As^{3+}> Sb^{3+}$ D) $Bi^{3+}> Sb^{3+}> As^{3+}$
- 10. Nitrogen is relatively inactive element because
 - A) Its atom has a stable electronic configuration
 - B) It has low atomic radius
 - C) Its electronegativity is fairly high
 - D) Dissociation energy of its molecule is fairly high

11. Pick out the wrong statement.

A) Nitrogen has the ability to form $p\pi$ - $p\pi$ bonds with itself

B) Bismuth forms metallic bonds in elemental state

C) Catenation tendency is higher in ni	itrogen v	when	compared	with other	elements o	of the
same group						

D) Nitrogen has higher first ionisation enthalpy when compared with other elements of the same group

- 12. The type of hybridization of boron in diborane is?
 - A) sp³ hybridization B) sp² hybridization
 - C) sp hybridization D) sp³d² hybridization
- 13. AIF₃ is soluble in HF only in presence of KF. It is due to the formation of?

A) K₃[AlF₃H₃] B) K₃[AlF₆] C) AlH₃ D) K₃[AlF₃H]

- 14. Boron compounds behave as Lewis acids, because of their
 - A) Ionization property B) Electron deficient nature
 - C) Acidic nature D) Covalent nature
- 15. Collectively the elements of group 15 are called -
- A) Pnicogens B) Pnicopens C) Nicopen D) None of these


```
TEACHER'S CARE ACADEM
```

- A) Contains replaceable H⁺ ion
- B) Gives up a proton
- C) Accepts OH⁻ from water releasing proton
- D) Combines with proton from water molecule
- 17. Which of the following structure is similar to graphite?
 - A) B₄C B) B₂H₆ C) BN
- 18. Assertion (A): When diborane is heated with NH₃ 200⁰ C, borazole is obtained.

Reason (R): Borazole is known as inorganic benzene.

- A) Both A and R is true and R is correct
- B) Both A and R is true and R is not correct
- C) A is true but R is false D) a is false but R is true
- 19. Alum results in early sedimentation true or false?
 - A) True
 - C) Sometimes true sometimes false *D*) Neither true nor false
- 20. Which of the following is not a common property of aluminium alloys?
 - A) Low strength B) Heat treatable
- C) Easy for machining D) Readily joined b welding

21. Why has the aluminium association established a system of designating aluminium alloys?

B) False

- A) To create employment B) To remove confusion
- C) To encourage research D) To ensure availability
- 22. Aluminium alloys also have a system that indicates temper.
- A) True B) False
- C) Sometimes true sometimes false D) Neither true nor false
- 23. Which of the following is the chemical formula of fullerenes?

A) C_0 B) C_6 C) C D) C_{60}

24. Stainless steel is very useful material for our life. In stainless steel, iron is mixed with

A) Ni and Cr	B) Cu and Cr	C) Ni and Cu	D) Cu and Ni
--------------	--------------	--------------	--------------

D) B

Teacher's Care Academy

HEAD OFFICE : 38/23, Vaigundaperumal Koil Street, Kancheepuram-1.

CONTACT : 044-2723 5080; 95665 35080; 9786269980

TNPSC/PG-TRB/TET/SPL. TEACHER (DRAWING) TRB COMPUTER SCIENCE - COACHING CENTRE (Classes : Saturday, Sunday & Govt. Holidays)

BRANCH OFFICE :

Branch Office 1 : 65C, Thillai Nagar (West), 4th Cross Street, Trichy – 620018.

Branch Office 2 : Vijiyaraghavachariar Memorial Hall (Opp to SundarLodge), Salem- 636007.

CONTACT : TRICHY: 7639967359; SALEM: 9360268118

UG TRB – 2023-24

CHEMISTRY

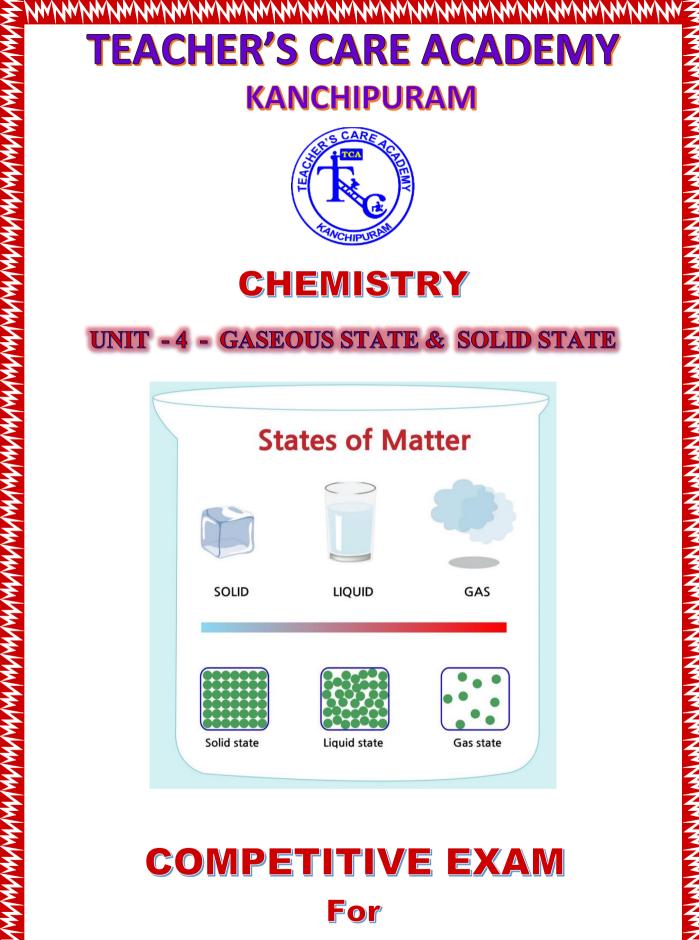
UNIT - 2

p, d & f Block Elements

M	ORE INFORMATION
Website	: www.tcaexamguide.com
Play Store	: tcaexamguide
🕒 YouTube	: Teacher's Care Academy
Mail	: tcaexamguide@gmail.com
f facebook	: tcaexamguide
© Whatsapp	: 95665 35080;
Mobile / Office	: 97862 69980; 93602 68118; 76399 67359
$\times \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	\diamond

TEACHER'S CARE ACADEMY

38/23, Vaigundaperumal Koil Street, Kanchipuram-1 Mobile : 95665 35080, 97862 69980 Help Line Numbers : 9360268118,7639967359


UG TRB CHEMISTRY 2023-2024

UNIT-4 GASEOUS STATE & SOLID STATE

Your Success is Our Goal....

Website : www.tcaexamguide.com

Mobile App : tcaexamguide

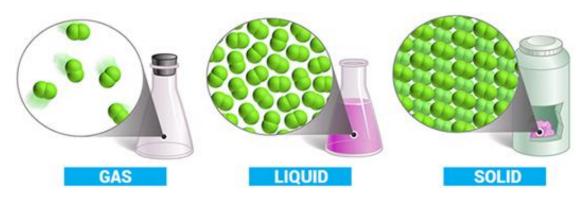
UG TRB – 2023-24

INDEX - UNIT 4 E.N. CHAPTER NAME **4.1. GASEOUS STATE** 4.1.1 Gas laws 4.1.2 The Gas Laws. 4.1.3 Charles' Law (Temperature -Volume Relationship) 4.1.4 Gay Lussac's Law (Pressure-Temperature Relationship) 4.1.5 Avogadro Law (Volume-no. of moles or amount relationship) 4.1.6 The Ideal gas equation 4.1.7 **Dalton's Law of Partial Pressures** 4.1.8 Kinetic molecular Theory of gases 4.1.9 Maxwell law of Distribution of Molecular velocities 4.1.10 **Collision properties** 4.1.11 Deviation from ideal gas behavior 4.1.12 Van der Waals Equation 4.1.13 Liquefaction of gases **4.2. SOLID STATE** 4.2.1 General characteristics of solids 4.2.2 Classification of Based on the nature of particles and binding force: 4.2.3 Interfacial angles 4.2.4 **Crystal lattice**

TEACHER'S CARE ACADEMY, KANCHIPURAM TNPSC-TRB- COMPUTER SCIENCE - TET COACHING CENTER

HEAD OFFICE: NO. 38/23, VAIGUNDA PERUMAL KOIL, SANNATHI STREET, KANCHIPURAM – 1. CELL: 9566535080 B.Off 2: 65C, Thillai Ngr(West), 4th Cross St, Trichy – 620018 B.Off 3: Vijiyaraghavachariar Memorial Hall(Opp to Sundar Lodge), Salem Trichy: 76399 67359 Salem: 93602 68118

UG TRB – CHEMISTRY – 2023-24


PHYSICAL CHEMISTRY - UNIT 4

GASEOUS STATE & SOLID STATE

4.1. GASEOUS STATE

4.1.1. Gas laws:

- All matters exist in three states gas, liquid and solid.
 - A Solids have a definite shape and definite volume. This is because in solids the ions are closely packed in certain order in fixed positions in the crystal lattice, the particle in a solid are not free to move about but vibrate in their fixed position, so the intermolecular force of attraction is greater.
 - A Liquids have no definite shape but have definite volume. In liquids, the intermolecular force of attraction is smaller than that in solids. So the particles do not have a fixed position.
 - A Gases have no definite shape and volume. Here the particles are far apart and hence they have no force of attraction. A gas consist of molecules separated wide apart in empty space, the molecules are free to move about throughout the container.

Comparison between the Three States of Matter:

Properties	Solid State	Liquid State	Gaseous State
Shape an volume	Have definite shape and volume	No definite shape but have definite volume	Have no definite shape and volume
Inter molecular force of attraction	Strong	In between solids and gases	Very small
Arrangement of particles	Closely packed	Loosely packed	Far apart
K.E of particles	Very low	In between solids and gases	Very high
Diffusability	Very low	In between solids and gases	Very high
Compressibility	Very low	In between solids and gases	Very high

General characteristics of Gases:

- Gas has limitless expansibility. They expand to fill the entire vessel they are placed in
- Gases are easily compressed by application of pressure to a movable piston fitted in the container.
- > Gases can diffuse rapidly through each other to form a homogeneous mixture.
- Gases exert pressure on the walls of the containers in all directions.
- When a gas confined in a vessel is heated, its pressure increased. Upon heating in a vessel fitted with a piston, volume of the gas increases.
- Pressure. Gases exert pressure on the walls of the container in all direction. You can site the example of a gas balloon.

Parameters of a Gas:

- A gas sample can be described in terms of four parameters
- the volume, V of the gas
- it's pressure, P

- it's temperature, T
- > the number of moles, n, of gas in the container

Volume:

- The volume of the container is the volume of the gas sample. It's is usually given in litre or millilitres
 - > 1 litre (I) = 1000ml and 1 $ml = 10^{-3}l$

Pressure:

- The pressure of a gas is defined as the force exerted by the impact of its molecules per unit surface area in contact.
- The pressure of a gas sample can be measured with the help of a mercury manometer.
- The atmospheric pressure can be determined with a mercury barometer.
 - > 1 atm = 760 mm Hg = 760 torr = $1.013 \times 10^5 Pa$.

Temperature:

The temperature of a gas may be measured in centigrade degrees (°C) or celsius degrees. The SI unit of temperature is Kelvin (K)

 \succ K = C + 273

The Moles of a Gas Sample, n:

- The number of moles, n, of a sample of a gas in a container can be found the mass, m of the sample by dividing the molar mass, M
 - Moles of a gas (n) = mass of gas sample (m)/ molecular mass of gas(M)

Measurable Properties of Gases:

 Mass: The mass of gas is generally used in the form of number of moles which is related as

(i) no of moles
$$=\frac{wt.in.gm}{Molecular mass of gases} \left(n = \frac{w}{M}\right)$$

(ii) number of moles $=\frac{no. of molecules of given gas}{Avogadro's number of molecules} \left(n = \frac{N}{N_A}\right)$

(iii) no. of moles
$$=\frac{volume \ of \ given \ gas \ in \ litters \ at \ STP}{22 \ 4L}$$

Volume :

Volume of gas is volume of the container in which it is present, i.e space which the gas molecules can occupy.

Relation Between Different Units of Volume :

$$\sim 1m^3 = 10^3 dm^3 = 10^3 litre = 10^6 cm^3 = 10^6 ml = 10^9 mm^3$$

Temperature:

Degree of Hotness or Coldness of a Body is Measured by Temperature:

$$\frac{C}{100} = \frac{K - 273}{100} = \frac{F - 32}{180}$$

> C-Celsius scale , K – Kelvin scale, F- Fahrenheit scale

Note:

>

> In all the problem of gaseous state (i.e. in all gas law equations), temperature must be expressed in Kelvin scale i.e.. $t^{\circ}C + 273.15 = TK$

Pressure:

Pressure of gas is defined as the force excreted by the on the walls of it's container It is often assumed that pressure is isotropic, i.e it is the same in all the three directions.

4.1.2. The Gas Laws:

These are some relationships connecting the measurable properties of gases like pressure (P), temperature (T), volume (V) and number of moles (n). These are some relationships connecting the measurable properties of gases like pressure (P), temperature (T), volume (V) and number of moles (n).

Postulates of Kinetic Theory of Gases:

1. Every gas consists of large number of tiny particles called point masses i.e. the actual volume of molecules is negligible when compared to the total volume of the gas. For the same gas, all molecules are of same size and mass.

2. The gas molecules are always in a state of rapid zig-zag motion in all directions. These molecules collide with each other and with the walls of the containing vessel.

3. A molecule moves in a straight line with uniform velocity between two collisions.

4. The molecular collisions are perfectly elastic so that there is no net loss of energy when the gas molecules collide with one another or against the walls of the vessel. Suppose two molecules collide having same mass m. Before collision the velocity of one molecule is u_1 and velocity of other molecule is u_2 and after collision the velocity of the molecule's changes from u1to u_1 ' and from u_2 to u_2 ' then if the collisions are elastic there is no loss of kinetic energy. This can be expressed as follows.

Total kinetic energy of two molecules before collision is

$$\frac{1}{2}m_1\nu_1^2 + \frac{1}{2}m_2\nu_2^2$$

And after collision total kinetic energy of both the molecules is

$$\frac{1}{2}m_1v_1'^2 + \frac{1}{2}m_2v_2'^2$$

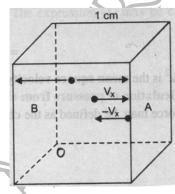
If
$$\frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 = \frac{1}{2}m_1v_1^{2} + \frac{1}{2}m_2v_2^{2}$$

i.e. total kinetic energy before collision is equal to total kinetic energy after collision then the collision is said to be an elastic collision.

5. There are no attractive forces operating between molecules or between molecules and the walls of the vessel in which the gas has been contained. The molecule move independently of one another.

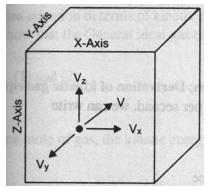
6. The pressure of the gas is the hits recorded by the molecules on the walls of the container in which the gas is contained.

7. The average kinetic energy of gas molecules is directly proportional to absolute temperature. This means that the average kinetic energy of molecules is the same at a given temperature. This must be clear to you that all the above postulates are applicable to ideal gases only i.e. the gas which obey Boyle's and Charle's law under all conditions of temperature and pressure. These are only approximately valid for real gases.


Derivation of Kinetic Gas Equation:

- Suppose a volume of gas enclosed in a cubical vessel at a fixed temperature
- Suppose that:
 - The length of each side of cube = I cm

- the number of gas molecules = n
- the mass of one molecule = m
- the velocity of a molecule = u
- Let us consider one single molecule of a gas can be evaluated by calculating the momentum during collisions.
- According to kinetic model the molecules of the gas are moving in straight lines in all possible directions.
- They collide with one another frequently as also with the walls of the container. Since their mutual collisions are perfectly elastic and do not involve the loss of energy, these may be neglected. Here we will, therefore, assume that gas molecules move in all directions but rebound whenever they strike the wall of the container. Now you proceed to derive kinetic gas equation in the following steps According to the kinetic theory, a molecule of a gas can move with velocity in any direction velocity is a vector quantity can be resolved into components *x*, *y*, *z* along the X, Y and Z axes. These components are related to velocity u by the following expression.


$$v^{2} = v_{x}^{2} + v_{y}^{2} + v_{z}^{2}$$

Let us consider a molecule moving in OX direction between opposite faces A and B. It will strike the face A with velocity x and rebound with velocity - x. To hit the same face again the molecule must travel *I* cm to Collide with opposite face B and then again *I* cm to return to face A. Therefore, time taken between two collisions can be calculated as follows:

The molecule travels v_x cm in 1 sec

In $2l/v_x$ sec molecule suffers 1 collision

hence1 cm in $1/v_x$ sec

And 2l cm in $2l / v_x$ sec

In 1 sec no of collisions = $u_x/2I$

Each impact of the molecule on the face A causes a change of momentum which is mass X velocity.

Momentum of the molecule before impact = mv_x

Momentum of the molecule after impact $= -mv_x$

Hence change of momentum $= m \upsilon x - (-m \upsilon x) = 2m \upsilon x$

But the number of collisions per second on face A = vx/2l

- Therefore, total change of momentum per second on face A caused by one Molecule
 - $=2m\upsilon x^2/2l$
 - $= m \upsilon x^2 / l$
- As there are two faces along x- direction, total change of momentum per second
- Considering both the faces along x-direction will be 2mux² / l
- This is change of momentum caused by one molecule along x-direction per second will be 2m vz²/l. The change of momentum caused by one molecule along ydirection per second will be 2m vy²/l and change of momentum caused by one molecule along z- direction per second will be
- Total change of momentum caused by one molecule considering along three direction will be

$$= 2m \upsilon x^{2} / l + 2m \upsilon y^{2} / l + 2m \upsilon z^{2} / l$$
$$= 2m / l (\upsilon x^{2} + \upsilon y^{2} + \upsilon z^{2})$$
$$= 2m \upsilon^{2} / l$$

$$= 2m v^2 / l$$

• Since there are n molecules in the vessel then total change of momentum due to n molecules will be $2mn v^2 / l$

 v^2 = mean square velocity

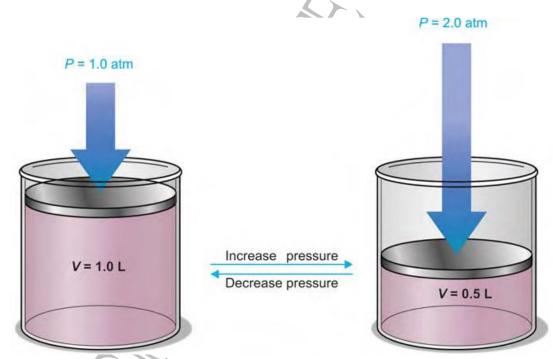
Since change of momentum per second is force

Hence force = $2mnv^2/l$

Since pressure = Total force/Total area

- Since there are six faces in a cube, area of each cube is l^2 . Hence total area is $6l^2$.
- Then pressure = $2mnv^2 / lx 1 / 6l^2 = mnv^2 / 3l^2$

As l^2 = volume V


Hence pressure

$$P = 1/3 mnv^2/V$$

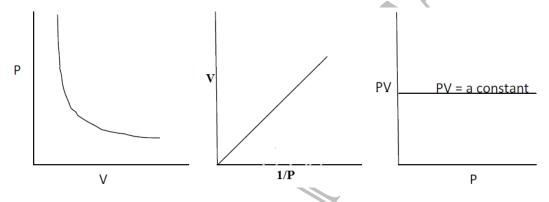
(or)
$$PV = 1/3 mnv^2$$

This is known as Kinetic Gas Equation. This equation has been derived for a cubical vessel. It is equally valid for vessel of any shape. The available volume in the vessel may be considered as made up of large number of infinitesimally small cubes, for each of them the equation is valid.

Boyle's Law (Pressure -Volume Relationship):

- It states that at constant temperature, the volume of a fixed mass of gas is inversely proportional to its pressure.
- The Boyle law may be express mathematically,

 $V \alpha 1/P$ = k x 1 / P,


• where *k* is the proportionality constant.

(or) PV = k, a constant

- Consider a fixed amount of gas at constant temperature T. Let $V_1 \& P_1$ are its initial volume and pressure respectively. Let the gas undergoes expansion, so that its final volume and pressure becomes V_2 and P_2 .
- Then according to Boyle's law,

 $P_1V_1 = k = P_2V_2$; $P_1V_1 = P_2V_2$

- If we plot graphs between pressure against volume (hyperbola), volume against 1/pressure (straight line) and PV against P at constant temperature, the graphs obtained are as follows
- These graphs are obtained at constant temperature and are called isotherms

Consequence of Boyle,s Law:

The pressure-density relationship can be derived from the boyle, s law as

$$P_1V_1 = P_2V_2$$
 (Boyle,s law)

$$P_1(m/d_1) = P_2(m/d_2)$$

 $P_1 / d_1 = P_2 / d_2$

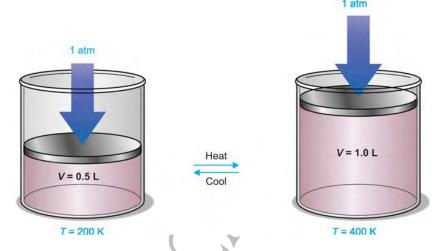
 A gas is present at a pressure of 2atm. What should be the increase in pressure so that the volume of the gas can be decreased to ¼ th of the initial value if the initial value if the temperature is maintained constant.

Sol : PV = constant for a given mass of gas at constant pressure

$$\Rightarrow P_1V_1 = P_2V_2 \qquad P_1 = 2atm \qquad V_1 = V \qquad V_2 = V / 4 \qquad P_2 = ?$$

Now, $2 \times V = P_2 = \frac{V}{4} \Rightarrow P_2 = 8atm$ increase

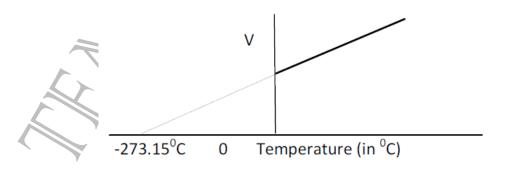
Pressure should be increased from 2 to 8 atm.


Total increase =8-2=6 atm

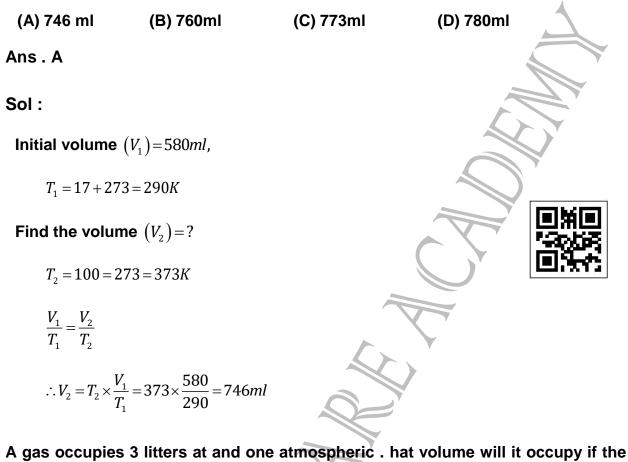
A sample of gas occupies 10 litre under a pressure of 1 atmosphere. What will be its volume if the pressure is increased to 2 atmospheres? Assume that the temperature of the gas sample does not change .

Ans: 5 Litre

4.1.3. Charles' Law (Temperature -Volume Relationship)


- It states that at constant pressure, volume of a fixed mass of gas is directly proportional to its temperature. Mathematically, $V\alpha T$
 - V = k x T; V / T = k, a constant

• Consider a fixed amount of gas at constant pressure P. Let V_1 be its volume at a temperature T_1 and V_2 be its volume at a temperature T_2 .


Then according to Charle's Law:

- $V_1 / T_1 = V_2 / T_{2}$, Since the graph is obtained at constant pressure, it is called **isobar**
- If volume is plotted against temperature at constant pressure, the graph obtained is as follows

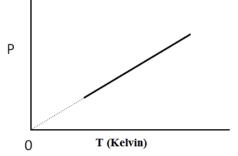
Since the graph is obtained at constant pressure, it is called isobar

A gas occupies a volume of 580 ml at $17^{\circ}C$. It is heated to $100^{\circ}C$ at constant pressure. Calculate the volume of the gas

A gas occupies 3 litters at and one atmospheric . hat volume will it occupy if the temperature is changed , the pressure remaining constant-

(A) 2.91 litres (B) 2.86 litres (C) 2.30 litres (D) none of these Ans : (b) 2.86 litres

4.1.4. Gay Lussac's Law (Pressure-Temperature Relationship):


 It states that at constant volume, the pressure of a fixed amount of a gas is directly proportional to the kelvin temperature.

Mathematically,

ΡαΤ

(or) $P = a \text{ constant} \times T$

(or), P/T = a constant

- If we plot a graph between pressure and temperature of a fixed mass of gas at constant volume, the graph obtained is as follows.
- The above is obtained at constant volume and is termed as an **isochore**.

4.1.5. Avogadro Law (Volume-no. of Moles or Amount Relationship):

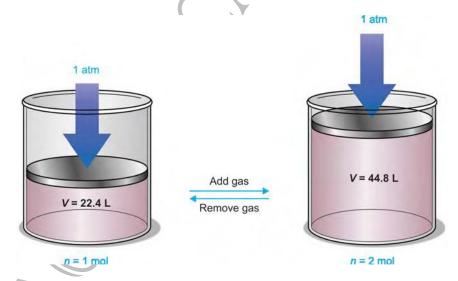
 It states that equal volumes of all gases under the same conditions of temperature and pressure contain equal number of moles or molecules. This means that at constant temperature and pressure, the volume of a gas is directly proportional to its number of moles (n) or molecules (N).

 $V \alpha n$,2the number of moles

 $V = k \times n$, where k is a constant; V/n = k; for any two gases with volumes V_1 , V_2 and moles n_1 , n_2 at constant T and P. $V_1/n_1 = A = V_2/n_2$

$$V_1 = V_2; n_1 = n_2$$

We know that number of moles (n) = mass in gram (m)/molar mass (M)

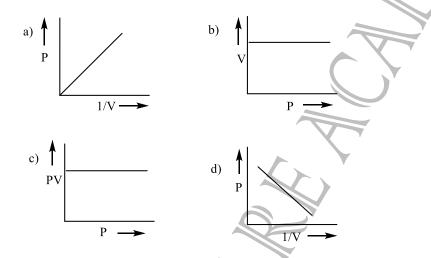

i.e., n = m/M

So, the above equation becomes:

V = k x m / M

Or,
$$M = k \times m / V$$
; $M = k \times d$; $M \alpha \alpha$

• The density of a gas is directly proportional to its molar mass.


Molar Gas Volume:

 The molar gas volume its follow as a corollary of Avogadro law that one mole of any gas at a given temperature and pressure has the same fixed volume. It is called the molar gas volume.

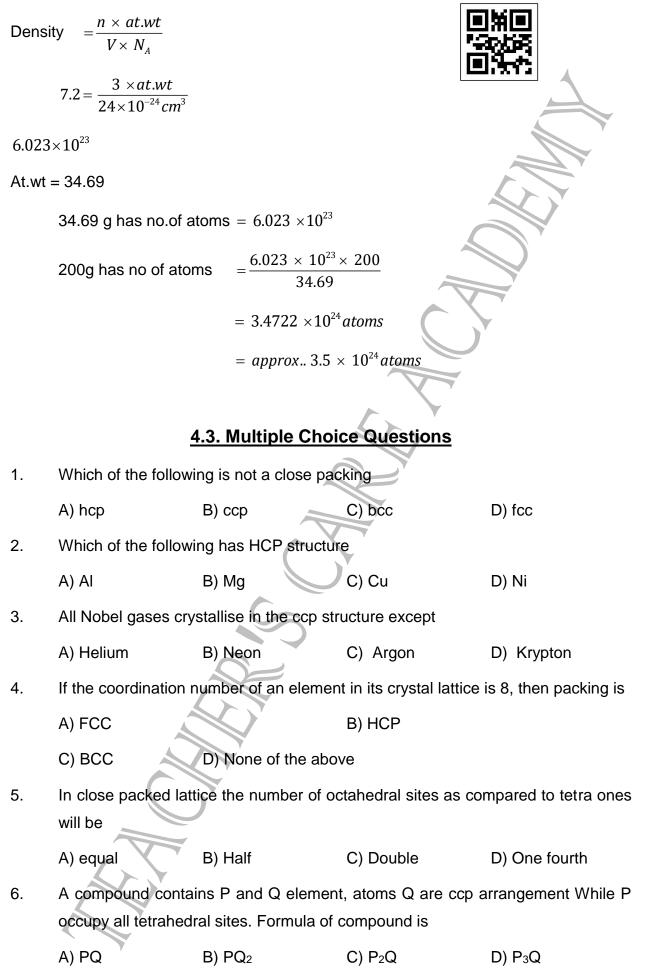
1 mole of a gas at STP = $22.7109 \ litres \ mol^{-1}$

Question for Practice:

- 1. Which of the following does not express the properties of gases?
 - (A) Gases are highly compressible.
 - (B) Gases exert pressure equally in all directions.
 - (C) Gases have much higher density than liquids and solids.
 - (D) Gases mix evenly and completely in all proportions.
- 2. Which of the following graphs represents the incorrect Boyles law (correct ansB)

3. A flask of capacity 2L is heated from 35°C to 45°C what volume of air will escape from the flask?

(A)10 ml	(B) 24 ml	(C) 65 ml	(D) 50 ml
----------	-----------	-----------	-----------


4. Absolute zero can be defined as the temperature at which

- (A) pressure becomes zero (B) volume becomes zero
- (C) mass becomes zero (D) density becomes zero

5. If we plot volume of a certain mass or volume of gas against temperature at constant pressure. this graph known as

(A) isochore(B) isotherm(C) isotone(D) isobar6. Mathemtically, Boyles law can be represented as
(A) $V\alpha 1/P$ (B) V = K/P(C) VP = K(D) all of these7. At constant temperature, the pressure of the gas is reduced to one third, the volume

- (A) reduced the one third (B) increased by three times
- (C) cannot be predicted (D) remains same

7. The co-ordintion number of Zn^{2+} and S^{2-} ions in the zinc blende (ZnS) type structure is D) 4:8 A) 4:4 B) 6:6 C) 8:8 8. Antifluorite structure is derived from fluorite structure by A) Heating fluorite crystal lattice B) Subjecting fluorite structure to high pressure C) Interchanging the position of positive and negative ions in the lattice D) All the above 9. At zero Kelvin, most of the ionic crystal posses B) Schottky defect A) Frenkel defect D) No defect C) Metal excess defect 10. As a result of schottky defect A) there is no effect on the density B) density of the crystal increase C) density of the crystal decreases D) any of the above three can happen 11. Frenkel defect is generally observed in B) Agl A) AgBr C) ZnS D) All of these 12. F-centres in an ionic crystal are A) lattice sites containing electron B) interstitial sites continuing electron C) lattice sites that are vacant D) interstitial sites containing cations 13. The correct statement regarding F-centre is A) Electrons are held in the lattice sites of crystal B) F-centre imparts colour to the crystal C) Conductivity of the crystal increases due to F-centre D) All the three above 14. For tetragonal crystal system which of the following is not true B) $\alpha = \beta = \gamma = 90^{\circ}$ A) $a = b \neq c$ C) a≠b≠c D) α=β≠γ=90°

- 15. In an ionic crystal, a cation and an anion leave the lattice to cause two vacancies. This defect is called A) Schottky defect B) Frenkel defect D) none of these C) interstitial defect Which of the following defects is generally found in sodium chloride and cesium 16. chloride? B) interstitial defect A) Frenkel defect C) Schottky defect D) none of these In a solid lattice, a cation has left a lattice site and is present in interstitial 17. position, the lattice defect is A) Schottky defect B) Frenkel defect D) interstitial defect C) vacancy defect 18.
 - In Frenkel defect,
 - A) some of the lattice sites are vacant
 - B) an ion occupies interstitial position
 - C) some of the cations are replaced by foreign ions
 - D) none of the above
 - 19. A device used to convert light energy into electrical energy is called
 - A) a semiconductor
 - C) an irreversible cell
- B) a solar cell
- D) an electrochemical cell
- For an ionic crystal of formula AX, the radius ratio lies between 0.732 and 0.414. 20. Its co-ordination number is

C) 8 A) 4 B) 6 D) 12

21. The radius ratio in an ionic crystal lies between 0.732-1.000, the co-ordination number is

A) 3 B) 4

A) 1, 2, 4

C) 6

D) 8

22. The number of atoms per unit cell in a simple cubic, fcc and bcc are

> B) 1, 4, 2 C) 4, 2, 1 D) 2, 4, 1

23. In a crystal, the atoms are located at the positions where potential energy is

A) maximum B) zero C) minimum D) infinite

Teacher's Care Academy

HEAD OFFICE : 38/23, Vaigundaperumal Koil Street, Kancheepuram-1.

CONTACT : 044-2723 5080; 95665 35080; 9786269980

TNPSC/PG-TRB/TET/SPL. TEACHER (DRAWING) TRB COMPUTER SCIENCE - COACHING CENTRE (Classes : Saturday, Sunday & Govt. Holidays)

BRANCH OFFICE :

Branch Office 1 : 65C, Thillai Nagar (West), 4th Cross Street, Trichy – 620018.

Branch Office 2 : Vijiyaraghavachariar Memorial Hall (Opp to SundarLodge), Salem- 636007.

CONTACT : TRICHY: 7639967359; SALEM: 9360268118

UG TRB – 2023-24

CHEMISTRY

UNIT - 4

GASEOUS STATE & SOLID STATE

	MO	RE INFORMATION
	Website	: www.tcaexamguide.com
2	Play Store	: tcaexamguide
	YouTube	: Teacher's Care Academy
	Mail	: tcaexamguide@gmail.com
	f facebook	: tcaexamguide
	Whatsapp	: 95665 35080;
Mobil	e / Office :	97862 69980; 93602 68118; 76399 67359
NANANANA	NANANANAN	MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM

TEACHER'S CARE ACADEMY

38/23, Vaigundaperumal Koil Street, Kanchipuram-1 Mobile : 95665 35080, 97862 69980 Help Line Numbers : 9360268118,7639967359

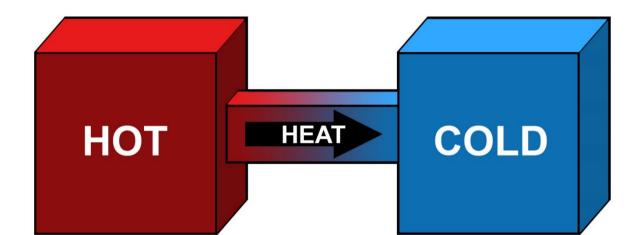
UG TRB CHEMISTRY 2023-2024

UNIT-5 THERMODYNAMICS & CHEMICAL KINETICS

Your Success is Our Goal....

Website : www.tcaexamguide.com

Mobile App : tcaexamguide


TEACHER'S CARE ACADEMY KANCHIPURAM

CHEMISTRY

UNIT - 5

THERMODYNAMICS

COMPETITIVE EXAM For UG TRB – 2023-24

INDEX

S.N.	CHAPTER NAME	P.N
5.1.	Introduction	1
	5.1.1. Branches of thermodynamics:	
	5.1.2. The most important laws of thermodynamics are:	
	5.1.3. First law of Thermodynamics	
	5.1.4. System Models:	
	5.1.5. Types of Thermodynamic system	
	5.1.6. States and Processes:	
	5.1.6.1. Instrumentation:	
	5.1.6.2. Conjugate variables:	
	5.1.6.3. Potentials:	
	5.1.7. Axiomatic thermodynamics:	
5.2.	Fundamental Concepts	20
	5.2.1. Thermodynamic states	
	5.2.1.1 Fundamental of Thermodynamic Potentials:	
	5.2.2. System:	
	5.2.2.1. Types of Systems:	
	5.2.2.2. Surroundings	
	5.2.2.3. Boundary	
5.3.	State of the System	26
	5.3.1. Internal energy (E or U) :	
	5.3.2. Entropy	
	5.3.3. Calculation for Entropy	
5.4.	Intensive and Extensive Properties in Thermodynamics	28
5.5.	Thermodynamic Processes	29

	5.5.1. Isobaric Process	
	5.5.2. Isochoric Process	
	5.5.3. Isothermal Process	
	5.5.4. Adiabatic Process	
5.6.		31
	Thermodynamic Equilibrium	
5.7.	Thermodynamic Properties	32
5.8.	State and Path Function	34
5.9.	Introduction About State Function	35
	5.9.1. State Functions vs. Path Functions	
	5.9.1.1. Definition	
5.10.	Applications	38
5.11.	History of the First Law of Thermodynamics	38
	5.11.1. Statement of First Law of Thermodynamics	
	5.11.2. Enthalpy:	
	5.11.3. Explanation	
	5.11.4. Heat of vaporization (or) Enthalpy of vaporization	
	5.11.4.1 Vaporization can be divided into two types	
	5.11.4.2 Formula for calculating heat of vaporization	
	5.11.5. Heat of Vaporization of Water	
	5.11.5.1 Differences in the Heat of Vaporization	
	5.11.6 Thermodynamics Applications:	
5.12.	Heat capacity	50
	5.12.1. Heat Capacity Formula	
	5.12.1.1. Specific Heat Capacity	
	5.12.1.2. Heat Capacity and Specific Heat	

	5.12.1.4. Negative Heat Capacity	
	5.12.1.5. Relationship between ^{Cp} and Cv:	
5.13.	Heat Capacity C, Cp, and Cv	58
	5.13.1. Definition of molar Heat Capacity ((C)	
5.14.	Heat Capacity Ratio	61
5.15.	The reason of Cp Greater than Cv	63
5.16.	Hess's law of Constant Heat Summation	66
	5.16.1. Explanation of Hess's law	
	5.16.2. Importance of Hess Law	
	5.16.3. Forms of Hess Law	
	5.16.4. Application of Hess law of Heat Summation	
5.17.	Kirchhoff's law	75
	5.17.1. Kirchhoff's Law Equation	
	5.17.2. Effect of Temperature on Heat of Reaction: The Kirchhoff Equation	
	5.17.3. Kirchhoff's second law	
	5.17.4. Kirchhoff's Voltage Law	
	5.17.5. Kirchhoff's Circuit Law	
	5.17.6. Application of Kirchhoff's Circuit Laws	
5.18.	Second Law of Thermodynamics	85
5.19.	Carnot Theorem	88
	5.19.1. Carnot's theorem states that,	
	5.19.2. Reversible engine:	
5.20.	Definition	89
	5.20.1. Explanation for Carnot theorem:	
	5.20.2. The Efficiency of Carnot's Cycle	

	5.20.3. Applications of Carnot's theorem	
5.21.	Free energy or Gibbs free energy	95
	5.21.1. Example for Free energy	
	5.21.2. Using Free Energies of Formation to Determine Standard State Free Energy	
	5.21.3. Using Enthalpy Changes and Entropy Changes to Determine Standard State Free	
	5.21.4. Using Equilibrium Constants to Determine Standard State Free Energy Changes	
	5.21.5. Using Cell Potentials to Determine Standard State Free Energy Changes	
5.22.	Chemical Equilibrium	97
	5.22.1. Example for Chemical Equilibrium	
	5.22.2. Factors Affecting Chemical Equilibrium: Some Factors are given in the below	
	5.22.3. Importance of Chemical Equilibrium	
5.23.	Third Law of Thermodynamics	103
	5.23.1. History of Third Law of Thermodynamics	
	5.23.2. Statement of Third Law of Thermodynamics	
	5.23.3. Examples for Third law of Thermodynamics	
5.24.	Gibb's and Helmholtz Function	108
	5.24.1. Helmholtz Free Energy Equation Derivation	
	5.24.2. Applications:	
	5.24.3. Spontaneity in Thermodynamics	
	5.24.3.1. Examples for Spontaneous reaction	
	5.24.3.2. Predicting the spontaneity of a reaction	
	5.24.3.3. Criteria for Spontaneity	
	5.24.3.4. Example for Non-spontaneous reaction	

5.25.	Chemical Kinetics	115
	5.25.1. Introduction	
5.26.	Rate of reaction	117
	5.26.1. Formula used in Chemical Kinetics	
	5.26.2. Factors Affecting the Reaction Rate	
5.27.	Rate Law	123
	5.27.1. Reaction Orders	
5.28.	Rate Constants	124
5.29.	Derivation for First order Rate Constant	125
	5.29.1. Graphical Representation of a First-Order Reaction	
5.30.	Molecularity in Chemical Kinetics	129
	5.30.1. Types of Molecularity	
5.31.	Zero Order Reaction	133
	5.31.1. Characteristics of Zero Order Reaction	
	5.31.1.1. There are two broad categories of situations that	
	can result in zero-order rates	
	5.31.2. Differential and Integral Form of Zero Order Reaction	
	5.31.3. Half-Life of a Zero Order Reaction	
	5.31.4. Degree of Reaction	
	5.31.5. Relation Between Half-life and Zero-order Reactions	
5.32.	Effect of Temperature on Rate of Reaction	139
	5.32.1. Effect of Temperature	
5.33.	Activation Energy	140
	5.33.1. Endothermic and Exothermic Reaction Vs Activation Energy	
	5.33.2. Activation energy and the activated complex	

	Arrhenius Equation	143
	5.34.1. Significance of effect of Temperature	
5.35.	Half-Life Period	146
	5.35.1. Half-life formula	
	5.35.2. Derivation of Half-Life Formula for Zero-Order Reaction	
	5.35.3. Derivation of First-Order Reaction Half-life Formula	
	5.35.4. Derivation of Second-Order Reaction Half-life Formula	
	5.35.5. Examples of Half-life Chemical Reactions	
5.36.	Theory of Reaction Rates	150
	5.36.1. Collision Theory	
	5.36.2. Transition State Theory	
	5.36.3. Failure of Collision Theory	
5.37.	Significance of Entropy of Activation	157
5.38.	Significance of Free energy of Activation	157
5.39.	Multiple Choice Questions	177

TEACHER'S CARE ACADEMY, KANCHIPURAM

TNPSC-TRB- COMPUTER SCIENCE -TET COACHING CENTER

HEAD OFFICE:NO. 38/23, VAIGUNDA PERUMAL KOIL,SANNATHI STREET, KANCHIPURAM – 1. CELL: 9566535080B.Off 2: 65C, Thillai Ngr(West), 4th Cross St, Trichy – 620018B.Off 3: Vijiyaraghavachariar Memorial Hall(Opp to Sundar Lodge), SalemTrichy: 76399 67359Salem: 93602 68118

UG TRB – CHEMISTRY – 2023-24

INORGNIC CHEMISTRY - UNIT 5

THERMODYNAMICS

5.1. INTRODUCTION:

- Thermodynamics, science of the relationship between heat, work, temperature, and energy. In broad terms, thermodynamics deals with the transfer of energy from one place to another and from one form to another.
- The key concept is that heat is a form of energy corresponding to a definite amount of mechanical work.
- Heat was not formally recognized as a form of energy until about 1798, when Count Rumford (Sir Benjamin Thompson), a British military engineer, noticed that limitless amounts of heat could be generated in the boring of cannon barrels and that the amount of heat generated is proportional to the work done in turning a blunt boring tool. Rumford's observation of the proportionality between heat generated and work done lies at the foundation of thermodynamics. Another pioneer was the French military engineer Sadi Carnot, who introduced the concept of the heat-engine cycle and the principle of reversibility in 1824. Carnot's work concerned the limitations on the maximum amount of work that can be obtained from a steam engine operating with a high-temperature heat transfer as its driving force. Later that century, these ideas were developed by Rudolf Clausius, a German mathematician and physicist, into the first and second laws of thermodynamics, respectively.
- Thermodynamics is the study of the relations between heat, work, temperature, and energy. The laws of thermodynamics describe how the energy in a system changes and whether the system can perform useful work on its surroundings. It is represented in the Figure 1.

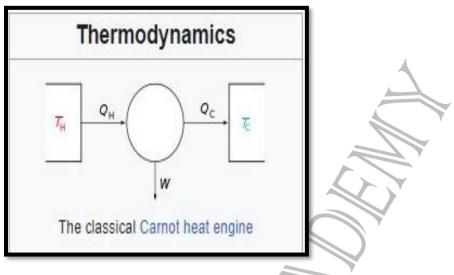


Figure 1: Representation of Flow of heat and Work

- The history of thermodynamics as a scientific discipline generally begins with Otto von Guericke who, in 1650, built and designed the world's first vacuum pump and demonstrated a vacuum using his Magdeburg hemispheres. Guericke was driven to make a vacuum in order to disprove Aristotle's long-held supposition that 'nature abhors a vacuum'. Shortly after Guericke, the Anglo-Irish physicist and chemist Robert Boyle had learned of Guericke's designs and, in 1656, in coordination with English scientist Robert Hooke, built an air pump. Using this pump, Boyle and Hooke noticed a correlation between pressure, temperature, and volume. In time, Boyle's Law was formulated, which states that pressure and volume are inversely proportional. Then, in 1679, based on these concepts, an associate of Boyle's named Denis Papin built a steam digester, which was a closed vessel with a tightly fitting lid that confined steam until a high pressure was generated.
- Later designs implemented a steam release valve that kept the machine from exploding. By watching the valve rhythmically move up and down, Papin conceived of the idea of a piston and a cylinder engine. He did not, however, follow through with his design. Nevertheless, in 1697, based on Papin's designs, engineer Thomas Savery built the first engine, followed by Thomas Newcomen in 1712. Although these early engines were crude and inefficient, they attracted the attention of the leading scientists of the time.
- The fundamental concepts of heat capacity and latent heat, which were necessary for the development of thermodynamics, were developed by Professor Joseph Black at the University of Glasgow, where James Watt was employed as an instrument maker. Black and Watt performed experiments together, but it was Watt who conceived the idea of the external condenser which resulted in a large increase in steam

engine efficiency. Drawing on all the previous work led Sadi Carnot, the "father of thermodynamics", to publish Reflections on the Motive Power of Fire (1824), a discourse on heat, power, energy and engine efficiency. The book outlined the basic energetic relations between the Carnot engine, the Carnot cycle, and motive power. It marked the start of thermodynamics as a modern science.

- The first thermodynamic textbook was written in 1859 by William Rankine, originally trained as a physicist and a civil and mechanical engineering professor at the University of Glasgow. The first and second laws of thermodynamics emerged simultaneously in the 1850s, primarily out of the works of William Rankine, Rudolf Clausius, and William Thomson (Lord Kelvin). The foundations of statistical thermodynamics were set out by physicists such as James Clerk Maxwell, Ludwig Boltzmann, Max Planck, Rudolf Clausius and J. Willard Gibbs.
- Clausius, who first stated the basic ideas of the second law in his paper "On the Moving Force of Heat", published in 1850, and is called "one of the founding fathers of thermodynamics", introduced the concept of entropy in 1865.
- During the years 1873to 1876 the American mathematical physicist Josiah Willard Gibbs published a series of three papers, the most famous being "On the Equilibrium of Heterogeneous Substances", in which he showed how thermodynamic processes, including chemical reactions, could be graphically analyzed, by studying the energy, entropy, volume, temperature and pressure of the thermodynamic system in such a manner, one can determine if a process would occur spontaneously. Also Pierre Duhem in the 19th century wrote about chemical thermodynamics.
- During the early 20th century, chemists such as Gilbert N. Lewis, Merle Randall, and Guggenheim applied the mathematical methods of Gibbs to the analysis of chemical processes.
- Thermodynamics is a branch of physics that deals with heat, work, and temperature, and their relation to energy, entropy, and the physical properties of matter and radiation.
- The behavior of these quantities is governed the four laws of by thermodynamics which convey a quantitative description using measurable macroscopic physical quantities, but be explained may in terms of microscopic constituents by statistical mechanics.

- Thermodynamics applies to a wide variety of topics in science and engineering, especially physical chemistry, biochemistry, chemical engineering and mechanical engineering, but also in other complex fields such as meteorology.
- Historically, thermodynamics developed out of a desire to increase the efficiency of early steam engines, particularly through the work of French physicist Sadi Carnot (1824) who believed that engine efficiency was the key that could help France win the Wars. Cots-Irish physicist Lord Kelvin was the first to formulate a concise definition of thermodynamics in 1854 which stated, "Thermo-dynamics is the subject of the relation of heat to forces acting between contiguous parts of bodies, and the relation of heat to electrical agency."
- German physicist and mathematician Rudolf Clausius restated Carnot's principle known as the Carnot cycle and gave so the theory of heat a truer and sounder basis. His most important paper, "On the Moving Force of Heat", published in 1850, first stated the second law of thermodynamics. In 1865 he introduced the concept of entropy. In 1870 he introduced the virial theorem, which applied to heat.
- The initial application of thermodynamics to mechanical heat engines was quickly extended to the study of chemical compounds and chemical reactions. Chemical thermodynamics studies the nature of the role of entropy in the process of chemical reactions and has provided the bulk of expansion and knowledge of the field. Other formulations of thermodynamics emerged.
- Statistical thermodynamics, (or) statistical mechanics, concerns itself with statistical predictions of the collective motion of particles from their microscopic behavior. In 1909, ConstantinCarathéodory presented a purely mathematical approach in an axiomatic formulation, a description often referred to as geometrical thermodynamics.
- A description of any thermodynamic system employs the four laws of thermodynamics that form an axiomatic basis. The first law specifies that energy can be transferred between physical systems as heat, as work, and with transfer of matter.
- The second law defines the existence of a quantity called entropy, that describes the direction, thermodynamically, that a system can evolve and quantifies the state of order of a system and that can be used to quantify the useful work that can be extracted from the system.

- In thermodynamics, interactions between large ensembles of objects are studied and categorized. Central to this are the concepts of the thermodynamic system and its surroundings.
- A system is composed of particles, whose average motions define its properties, and those properties are in turn related to one another through equations of state.
- Properties can be combined to express internal energy and thermodynamic potentials, which are useful for determining conditions for equilibrium and spontaneous processes.
- With these tools, thermodynamics can be used to describe how systems respond to changes in their environment. This can be applied to a wide variety of topics in science and engineering, such as engines, phase transitions, chemical reactions, transport phenomena, and even black holes.
- The results of thermodynamics are essential for other fields of physics and for chemistry, chemical engineering, corrosion engineering, aerospace engineering, mechanical engineering, cell biology, biomedical engineering, materials science, and economics, to name a few.

5.1.1. Branches of Thermodynamics:

 The study of thermodynamical systems has developed into several related branches, each using a different fundamental model as a theoretical (or) experimental basis, (or) applying the principles to varying types of systems.

(i) Classical Thermodynamics:

Classical thermodynamics is the description of the states of thermodynamic systems at near-equilibrium that uses macroscopic, measurable properties. It is used to model exchanges of energy, work and heat based on the laws of thermodynamics. The qualifier classical reflects the fact that it represents the first level of understanding of the subject as it developed in the 19th century and describes the changes of a system in terms of macroscopic empirical (large scale, and measurable) parameters. A microscopic interpretation of these concepts was later provided by the development of statistical mechanics.

(ii) Statistical Mechanics:

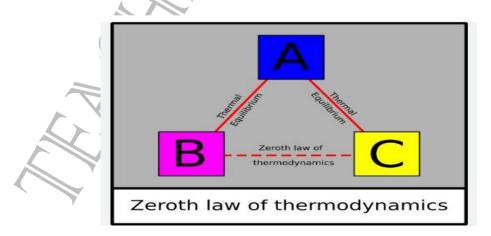
Statistical mechanics, also known as statistical thermodynamics, emerged with the development of atomic and molecular theories in the late 19th century and early 20th

century, and supplemented classical thermodynamics with an interpretation of the microscopic interactions between individual particles or quantum-mechanical states. This field relates the microscopic properties of individual atoms and molecules to the macroscopic, bulk properties of materials that can be observed on the human scale, thereby explaining classical thermodynamics as a natural result of statistics, classical mechanics, and quantum theory at the microscopic level.

(iii) Chemical Thermodynamics:

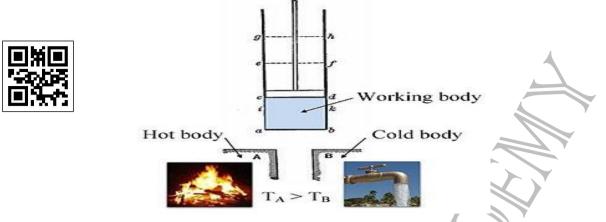
Chemical thermodynamics is the study of the interrelation of energy with chemical reactions (or) with a physical change of state within the confines of the laws of thermodynamics. The primary objective of chemical thermodynamics is determining the spontaneity of a given transformation.

(iv) Equilibrium Thermodynamics:


Equilibrium thermodynamics is the study of transfers of matter and energy in systems (or) bodies that, by agencies in their surroundings, can be driven from one state of thermodynamic equilibrium to another. The term 'thermodynamic equilibrium' indicates a state of balance, in which all macroscopic flows are zero, in the case of the simplest systems (or) bodies, their intensive properties are homogeneous, and their pressures are perpendicular to their boundaries. In an equilibrium state there are no unbalanced potentials, (or) driving forces, between macroscopically distinct parts of the system. A central aim in equilibrium thermodynamics is given a system in a well-defined initial equilibrium state, and given its surroundings, and given its constitutive walls, to calculate what will be the final equilibrium state of the system after a specified thermodynamic operation has changed its walls or surroundings.

(v) Non-equilibrium Thermodynamics:

Non-equilibrium thermodynamics is a branch of thermodynamics that deals with systems that are not in thermodynamic equilibrium. Most systems found in nature are not in thermodynamic equilibrium because they are not in stationary states, and are continuously and discontinuously subject to flux of matter and energy to and from other systems. The thermodynamic study of non-equilibrium systems requires more general concepts than are dealt with by equilibrium thermodynamics. Many natural systems still today remain beyond the scope of currently known macroscopic thermodynamic methods.


5.1.2. The Most Important Laws of Thermodynamics Are:

- Thermodynamics is principally based on a set of four laws which are universally valid when applied to systems that fall within the constraints implied by each. In the various theoretical descriptions of thermodynamics these laws may be expressed in seemingly differing forms, but the most prominent formulations are the following.
- The zeroth law of thermodynamics is defined as when two systems are each in thermal equilibrium with a third system, the first two systems are in thermal equilibrium with each other. This property makes it meaningful to use thermometers as the "third system" and to define a temperature scale.
- If two systems are each in thermal equilibrium with a third, they are also in thermal equilibrium with each other. This statement implies that thermal equilibrium is an equivalence relation on the set of thermodynamic systems under consideration. Systems are said to be in equilibrium if the small, random exchanges between them (e.g. Brownian motion) do not lead to a net change in energy. This law is tacitly assumed in every measurement of temperature. Thus, if one seeks to decide whether two bodies are at the same temperature, it is not necessary to bring them into contact and measure any changes of their observable properties in time. The law provides an empirical definition of temperature, and justification for the construction of practical thermometers.
- The zeroth law was not initially recognized as a separate law of thermodynamics, as its basis in thermodynamical equilibrium was implied in the other laws. The first, second, and third laws had been explicitly stated already, and found common acceptance in the physics community before the importance of the zeroth law for the definition of temperature was realized. As it was impractical to renumber the other laws, it was named the zeroth law, which is illustrated in the Figure 2.

∎₩∎
2008
回法者

Figure 2: Illustration of Zeroth law of Thermodynamics

Figure 3: Schematic representation of transformation of heat from hot body, cold body and working body.

- The first law of thermodynamics or the law of conservation of energy is states that the change in a system's internal energy is equal to the difference between heat added to the system from its surroundings and work done by the system on its surroundings.
- In a process without transfer of matter, the change in internal energy, of a thermodynamic system is equal to the energy gained as heat, less the thermodynamic work, done by the system on its surroundings.
- The schematic representation of flow of heat in hot body, cold body and working body is represented in the Figure 3.

5.1.3. First law of Thermodynamics:

The first law of thermodynamics states that the energy of the universe remains the same. Though it may be exchanged between the system and the surroundings, it can't be created or destroyed. The law basically relates to the changes in energy states due to work and heat transfer are shown in the Figure 4.

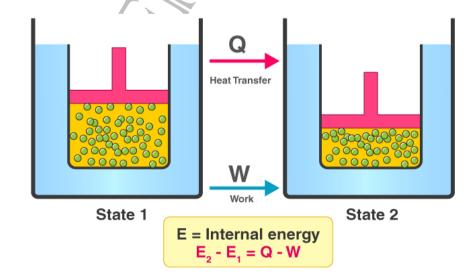
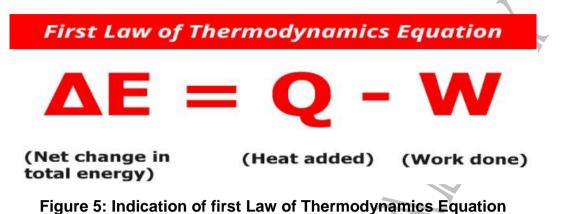
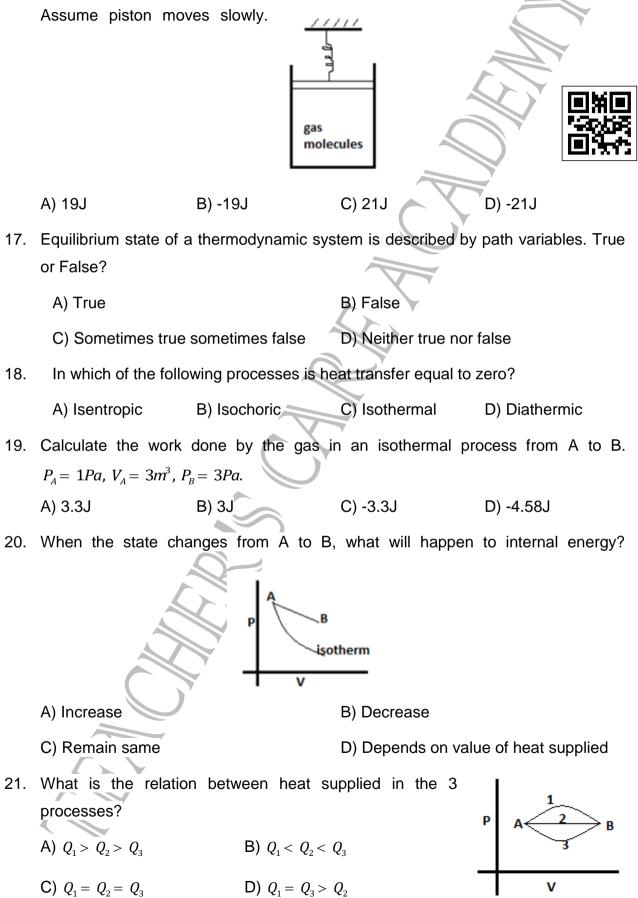



Figure 4: Schematic representation of First law of Thermodynaics **www.tcaexamguide.com (**95665 35080; 9786269980; 76399 67359; 93602 68118) The first law of thermodynamics can be the conversion of heat energy into work done that can be calculated by the following equation given in the Figure 5.

- Where denotes the change in the internal energy of a closed system (for which heat (or) work through the system boundary are possible, but matter transfer is not possible), denotes the quantity of energy supplied to the system as heat, and denotes the amount of thermodynamic work done by the system on its surroundings. An equivalent statement is that perpetual motion machines of the first kind are impossible, work done by a system on its surrounding requires that the system's internal energy decrease (or) be consumed, so that the amount of internal energy lost by that work must be resupplied as heat by an external energy source or as work by an external machine acting on the system (so that is recovere(d) to make the system work continuously.
- For processes that include transfer of matter, a further statement is needed, With due account of the respective fiducially reference states of the systems, when two systems, which may be of different chemical compositions, initially separated only by an impermeable wall, and otherwise isolated, are combined into a new system by the thermodynamic operation of removal of the wall, then

$$U_0=U_1+U_2.$$


- Where U₀ denotes the internal energy of the combined system, and U₁ and U₂ denote the internal energies of the respective separated systems. The internal energy denoted by the term E or U.
- Adapted for thermodynamics, this law is an expression of the principle of conservation of energy, which states that energy can be transformed (changed from one form to another), but cannot be created (or) destroyed.

5.39. Multiple Choice Questions:

	-	
1.	Which of the following is a branch of ther	modynamics?
	A) Equilibrium thermodynamics	B) Classical thermodynamics
	C) Chemical thermodynamics	D) All of the above mentioned
2.	What is the value of the absolute thermo	dynamic temperature scale?
	A) 3K B) 0K	C) 1K D) 4K
3.	What is the magnitude of mechanical wo	
	A) product of the force and distance trave	elled perpendicular to the force
	B) product of the force and distance trave	elled parallel to the force
	C) sum of the force and distance travelle	d perpendicular to the force
	D) sum of the force and distance travelle	d parallel to the force
4.	Joule was the first to prove that heat is a	type of energy, laying the groundwork for
	the fundamental law of thermodynamics.	
	A) False	B) True
	C) Sometimes true sometimes false	D) Neither true nor false
5.	Which of the following is true for a discha	arging tank?
	A) the process is quasi-static	B) the process is adiabatic
	C) dQ=0	D) all of the mentioned
6.	The entropy of an isolated system can ne	ever
	A) decrease	B) be zero
	C) increase	D) none of the mentioned
7.	Which of the following properties describ	e entropy?
	A) point function, intensive property	B) point function, extensive property
	C) path function, extensive property	D) path function, intensive property
8.	When work is dissipated into internal en	ergy, what is the change in the disorderly
	motion of molecules.	
	A) increases	B) remains the same
	C) decreases	D) none of the mentioned

9.	The available energy	/ of a system		as its temperature
	or pressure decreas	es and approaches t	hat of the surroundir	ngs.
	A) remains constant		B) increases	<u> </u>
	C) decreases		D) none of the me	ntioned
10.	Which of the following	ng is true?		
	A) Q for reversible <	Q for irreversible and	d work for reversible	< work for irreversible
	B) Q for reversible >	Q for irreversible and	d work for reversible	< work for irreversible
	C) Q for reversible <	Q for irreversible and	d work for reversible	> work for irreversible
	D) Q for reversible >	Q for irreversible and	d work for reversible	> work for irreversible
11.	The first law of thern	nodynamics for an ac	diabatic process is	
	$A)du=\delta W$	B) du =0	C) $du = -\delta W$	D) $du = \delta H + 2\delta W$
12.	A cycle tyres burst s	uddenly. What is the	type of this process	?
	A) Isothermal	B) Adiabatic	C) Isochoric	D) Isobaric
13.	In the given diagram	, one process is adia	batic and the other i	s isothermal. It can be
	said that process AE	is adiabatic. True o	r False?	A
	A) True	B) False	Р	
	C) Sometime true so	ometimes false)	C C
	D) Neither true nor fa	alse	+	v
14.	Assertion A): Therr	nodynamic process i	n nature is irreversit	ble.
	Reason (R) : Dissip	ative effects cannot l	be eliminated	
	A) If both assertion	and reason are tr	ue but reason is c	orrect explanation for
	assertion.	\mathbb{N}		
		and reason are true	e but reason is not o	correct explanation for
	assertion.			•ו
	C) If assertion is true			
	D) If both assertion a	and reason are false		
15.		•	nd the system does	20cal of work, find the
	change in internal er	B) 335cal	() 0 col	D) 335J
	A) 295cal	D) 0000al	C) 0 cal	0/ 0000

16. In the given system, 20J of heat is supplied to the gas molecules. The spring is initially not elongated or compressed. If the spring gets compressed by 1cm. Calculate the change in internal energy of the system. Spring constant = 200N/m. Assume piston moves slowly.

Teacher's Care Academy

HEAD OFFICE : 38/23, Vaigundaperumal Koil Street, Kancheepuram-1.

CONTACT : 044-2723 5080; 95665 35080; 9786269980

TNPSC/PG-TRB/TET/SPL. TEACHER (DRAWING) TRB COMPUTER SCIENCE - COACHING CENTRE (Classes : Saturday, Sunday & Govt. Holidays)

BRANCH OFFICE :

Branch Office 1 : 65C, Thillai Nagar (West), 4th Cross Street, Trichy – 620018.

Branch Office 2 : Vijiyaraghavachariar Memorial Hall (Opp to SundarLodge), Salem- 636007.

CONTACT : TRICHY: 7639967359; SALEM: 9360268118

UG TRB – 2023-24

CHEMISTRY

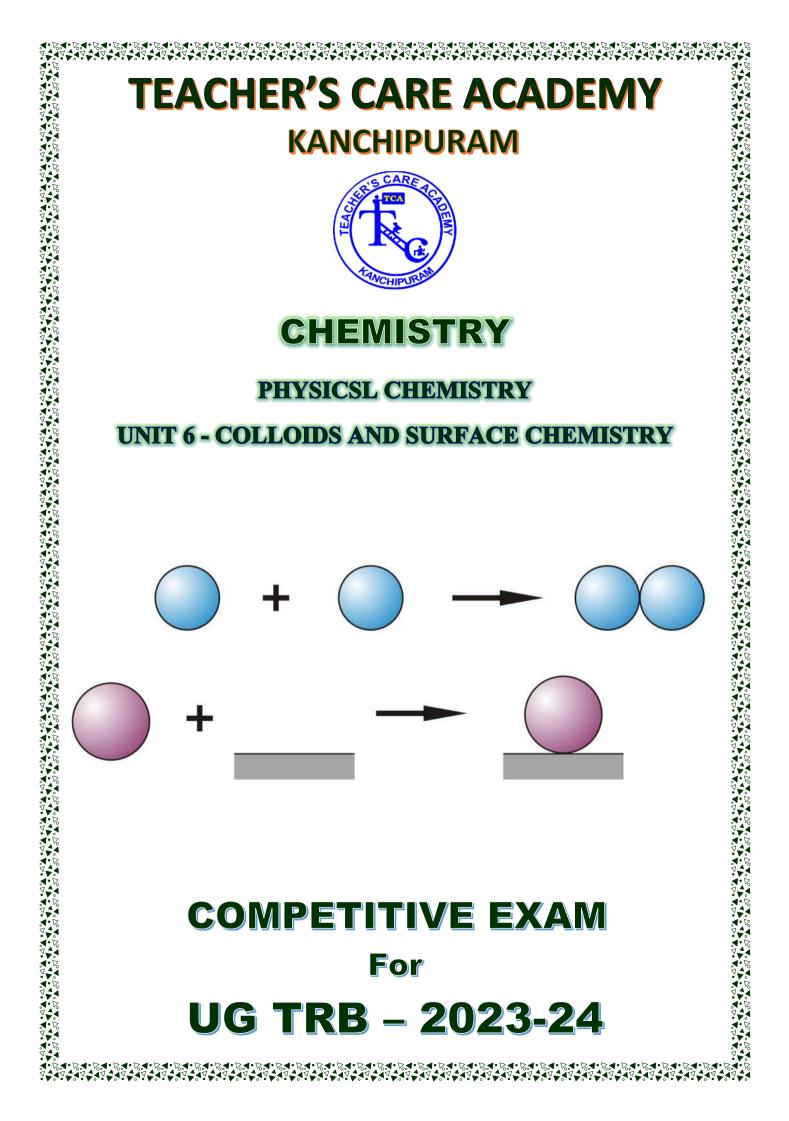
UNIT - 5

THERMODYNAMICS

A	MO	RE INFORMATION
	Website	: www.tcaexamguide.com
AK	Play Store	: tcaexamguide
J.	YouTube	: Teacher's Care Academy
	Mail	: tcaexamguide@gmail.com
	f facebook	: tcaexamguide
	O Whatsapp	: 95665 35080;
Mo	bile / Office :	97862 69980; 93602 68118; 76399 67359

TEACHER'S CARE ACADEMY

38/23, Vaigundaperumal Koil Street, Kanchipuram-1 Mobile : 95665 35080, 97862 69980 Help Line Numbers : 9360268118,7639967359


UNIT-6

COLLOIDS AND SURFACE CHEMISTRY & ELECTROCHEMISTRY

Your Success is Our Goal....

Website : www.tcaexamguide.com

Mobile App : tcaexamguide

	INDEX	
S.No	Chapter Name	Pg.No
6.1.	COLLOIDS	1
	6.1.1. Introduction of Colloids	1
	6.1.2. Preparation of Colloids	3
	6.1.3. Purification OF Colloids	14
	6.1.4. Properties of Colloids	18
	6.1.5. Stability of Colloids	21
	6.1.6. Stability of Sols	24
	6.1.7. Gels - Emulsions	28
	6.1.8. Emulsifiers	30
	6.1.9. Application of Colloids	33
	6.1.10. Application of Colloids	36
6.2.	SURFACE CHEMISTRY	42
	6.2.1. Adsorption	42
	6.2.2. Comparison Between Physisorption and Chemisorption	43
	6.2.3. Adsorption Isotherms	46
	6.2.4. Adsorption from Solutions	47
	6.2.5. Application of Adsorption	49
	6.2.6. Application of Adsorption	50
6.3.	Electrochemistry	52
	6.3.1. Types of Electrochemical Cell	54
	6.3.2. Types of Reversible Electrodes	59
	6.3.3. Types of Irreversible Electrodes	61
	6.3.4. Nernst Equation	70

6.4.	ARRHENIUS THEORY	91
	6.4.1. Arrhenius Theory	91
	6.4.2. Debye-HuckelOnsagar Equation	97
	6.4.3. Kohlrausch Law	100
	6.4.4.Ostwalds dillution Law	111
	6.4.5. Determination of ph and pka of Acids by Potentiometric Methods	119
	6.4.6. Corrosion	120
	6.4.7. Types of Corrosion	130
	6.4.8. Prevention of Corrosion	407
		137
5.5.	MULTIPLE CHOICE QUESTIONS	137 143
6.5.		
5.5.		
5.5.		
5.5.		
5.5.		
5.5.		
5.5.		
5.5.		

TEACHER'S CARE ACADEMY, KANCHIPURAM TNPSC-TRB- COMPUTER SCIENCE -TET COACHING CENTER

HEAD OFFICE: NO. 38/23, VAIGUNDA PERUMAL KOIL, SANNATHI STREET, KANCHIPURAM – 1. CELL: 9566535080 B.Off 2: 65C, Thillai Ngr(West), 4th Cross St, Trichy – 620018 B.Off 3: Vijiyaraghavachariar Memorial Hall(Opp to Sundar Lodge), Salem Trichy: 76399 67359 Salem: 93602 68118

UG TRB – CHEMISTRY – 2023-24

PHYSICSL CHEMISTRY - UNIT 6

COLLOIDS AND SURFACE CHEMISTRY

6.1. COLLOIDS:

6.1.1. Introduction of Colloids:

- The scientific study of colloids dates from the early 19th century.
- Among the first notable investigations was that of the British botanist **Robert Brown**.
- During the late 1820s Brown discovered, with the aid of a microscope, that minute particles suspended in a liquid are in continual, random motion.

What are colloids:

- A colloid is primarily a heterogeneous mixture in which the minute particles of one substance are dispersed in another substance, called the dispersion medium.
- The minute particles here are 1 to 1000 nanometers in diameter but they still remain suspended and do not settle at the bottom of the mixture.
- They are visible under an optical or an electron (smaller particles) microscope.

Colloids:

It is a mixture with particle size 1-1000nm

CLASSIFICATION OF COLLOIDS

						4
	DISPER		DISPERSION MEDIUM		IE OF AL SYSTEM	COMMON EXAMPLES
	Liqu	id	Gas	Liquid	Aerosol	Mist, clouds, fog
	Soli		Gas	•	osol	Dust, smoke
	Gas	S	Liquid	Fo	am	Suds, whipped cream
						Cream, milk, mayo
	Liqu	id	Liquid	Emu	lsion	Paints, jellies, sewage
	Solic	sk	Liquid	S	ol	
	Gas	S	Solid	Solid	foam	Marshmallow
	Liqu	id	Solid	Solid e	mulsion	Butter, cheese
	Soli	d	Solid	Soli	d sol	Opals, some alloys
					$\overline{\mathbf{b}}$	
Interactio	n	lyop	hilic colloi	ds are	Lyophobi	c colloids are solver
meracut	ווכ	solv	ent		hating co	lloids
	-	The	rmodynamica	ally stable	Thermody	ynamically unstable
		Precipitation in the			Precipitat	ion in the Lyophobic so
		lyophilic sol is reversible		is irrevers	sible process	
		proc				
	-	The	ere is strong attraction		There is I	ess or no attraction force
		force	e between colloids		between	colloids and the liquid
and the liquid						
		High	nly viscous		Having th solvent	he same viscosity as the
		_	n a lyophilic s			yophobic sol

6.1.2. Classification of Colloids:

- Colloids can be classified into two types by their dispersed phase and medium. They are given below,
 - 1. Physical state of dispersed phase and dispersion medium.
 - 2. Natural of interactions between dispersed phase and dispersion medium.
 - 3. Type of particles of the dispersed phase.
- 1. Physical state of dispersed phase and dispersion medium.
- Depending upon the physical state of dispersed phase and dispersion medium whether these are solids, liquids or gases, eight types of colloidal systems are possible.

Dispersed phase	Dispersed medium	Type of colloid	Example
Solid	Solid	Solid sol	Some coloured glasses, and gem stones
Solid	Liquid	Sol	Paints, cell fluids
Solid	Gas	Aerosol	Smoke, dust
Liquid	Solid	Gel	Cheese butter, jellies
Liquid	Liquid	Emulsion	Milk, hair cream
Liquid	Gas	Aerosol	Fog, mist, cloud, insecticide sprays
Gas	Solid	Solid sol	Pumice stone, foam rubber
Gas	Liquid	Foam	Froth, whipped cream, soap lather

Depending upon the nature of the dispersion medium, colloidal solutions are sometimes given specific names. For example:

Dispersion Medium	Name of Colloidal Solution
Water	Hydrosols or aquasol
Alcohol	Alcosols
Benzene	Benzosols
Air	Aerosols

Classification based on Nature of Interaction between Dispersed Phase and Dispersion Medium

- Depending upon the nature of interactions between dispersed phase and the dispersion medium, the colloidal solutions can be classified into two types as:
 - (i) lyophilic and
 - (ii) lyophobic sols.

(i) Lyophilic colloids

• The colloidal solutions in which the particles of the dispersed phase have a great affinity (or love) for the dispersion medium, are called lyophilic colloids.

a) These solutions are easily formed and the lyophilic colloids are reversible in nature. The reversible. If the dispersion medium is separated from the dispersed phase the sol can be again formed by simply remixing it with the dispersion medium.

b) These sols are quite stable and cannot be easily coagulated. Examples of lyophilic colloids are gum, gelatine, starch, proteins, rubber, etc.

(ii) Lyophobic colloids

 The colloidal solutions in which there is no affinity between particles of the dispersed phase and the dispersion medium are called lyophobic colloids. Such solutions are formed with difficulty.

(a) These sols are readily precipitated (or coagulated) on the addition of small amounts of electrolytes, by heating or by shaking. Therefore, these are not stable.

(b)Further, once precipitated, they do not form the colloidal sol by simple addition of dispersion medium. Hence, these are irreversible in nature. These sols need some stabilising agents for their preservation.

(c) In case, the dispersion medium is water, the lyophobic sol. is called **hydrophobic colloid**. For example: the solutions of metals like Ag and Au, hydroxides $Fe(OH)_3$, metal sulphides like AS_2S_3 etc.

S.NO	PROPERTY	LYOPHOBIC SOL	LYOPHILLIC SOL
		(SUSPENSOID)	(EMULSOID)
1	Preparation	Cannot be prepared easily special methods are required	Can be easily prepared by shaking or warming the substance with solvent are more stable
2	Stability	are less stable	are more stable
3	Reversibility	are irreversible	are reversible
4	Viscosity	Viscosity is nearly same as that of the solvent	Viscosity is much higher than that of solvent
5	Surface tension	Surface tension is almost same as that of solvent	Surface tension is usually low.
6	Hydration or salvation	These are less solved as the particles have less affinity for the solvent	These highly solved as the particles have great affinity for solvent
7	Charge	The particles carry a characteristic charge either positive or negative	The particles have little charge or no charge at all.
8	Visibility	Particles can be seen under microscope	Particles cannot be seen under microscope
9	Coagulation or precipitation	Precipited by low concentration of electrolysis	Precipited by high concentration of electrolysis
10	Tyndal effect	More scattering	Less scattering
11	Migration in electric filed	Migrate towards anode or cathode as these participles	Mayor may not migrate carry charge
12	General example	Mostly of inorganic nature	Mostly of organic nature

Classification Based on Type of Particles of Dispersed Phase:

- Depending upon the type of the particles of the dispersed phase, the colloids are classified as:
 - 1) Multimolecular colloids
 - 2) Macromolecular colloids
 - 3) Associated colloids.

1) Multimolecular Colloids:

- When on dissolution, atoms or smaller molecules of substances (having diameter less than 1 nm) aggregate together to form particles of colloidal dimensions, the particles thus formed are called multimolecular colloids.
- Therefore, in these sols the dispersed phase consists of aggregates of atoms or molecules with molecular size less than 1 nm.
 - For example: sols of gold atoms and sulphur (S_{s}) molecules.

In these colloids, the particles are held together by van der Waals forces.

2) Macromolecular Colloids:

- These are the substances having big size molecules (called macro molecules) which on dissolution form solution in which the dispersed phase particles have size in the colloidal range.
- Naturally occurring macro-molecules are starch, cellulose, proteins, enzymes, gelatin etc.
- Artificial macro-molecules are synthetic polymers such as nylon, polythene, plastics, polystyrene etc.
- Since these macromolecules have large sizes comparable to those of colloidal particles, the solutions of such molecules are called macromolecular colloidal solutions.
- Thus, the common examples of macromolecular colloids are starch, cellulose, proteins, plastics, etc.

3) Associated Colloids:

These are the substances which when dissolved in a medium behave as normal electrolytes at low concentration but behave as colloidal particles at higher concentration due to the formation of aggregated particles.

www.tcaexamguide.com (95665 35080; 9786269980; 76399 67359; 93602 68118)

6

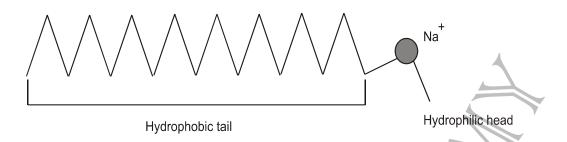
- The aggregate particles thus formed are called **micelles**.
 - For example: In aqueous solution soap (sodium stearate) ionises as:

 $C_{17}H_{35}COONa \Leftrightarrow C_{17}H_{35}COO^{-} + Na^{+}$

- In concentrated solution, these ions get associated to form an aggregate of colloidal size. The colloidal behaviours of such substances is due to the formation of aggregates or clusters in solutions. Such aggregated particles are called **micelles**.
- Thus, micelles are the cluster or aggregated particles formed by association of colloids in solution. The common examples of micelles are soaps and detergents.
- The formation of micelles takes place above a particular temperature called **Kraft** temperature (T_k) and above a particular concentration called **critical** micellization concentration (CMC).
 - > For example: CMC for soaps is about 10^{-4} to 10^{-3} mol L^{-1}

On dilution, these colloids revert back to individual ions.

Mechanism of Micelle Formation:


These two parts soaps are represented as: Ο 0 CH2 CH. CH CH₂ CH CH CH й СН₂ CH CH₂ CH₂ . CH₂ . CH₂ ONa* CH₂ ĊH₃ Sodium stearate C₁₇H₃₅COO Na⁺ of simply as O Na (CH₂) is CH₂ С Ο,

Hydrophobhilic head polar head

www.tcaexamguide.com (95665 35080; 9786269980; 76399 67359; 93602 68118)

Hydrophobhobic part

Non - polar tail

 Micelles are generally formed by the aggregation of several ions or molecules with lyophobic as well as lyophilic parts. The micelle may contain as many as 100 molecules or more. When sodium stearate is dissolved in water, it gives Na⁺ and CH₃COO⁻ ions.

$$C_{17}H_{35}COONa \Leftrightarrow C_{17}H_{35}COO^{-} + Na^{+}$$

• The stearate ions associate to form ionic micelles of colloidal size. The stearate ion, $C_{17}H_{35}COO^{-}$ consists of two parts:

1) a non-polar part which consists of long chain hydrocarbon part. It is called non-polar tail. This part is insoluble in water but soluble in oil or grease. It is also called water repelling or hydrophobic part.

2) a polar group which consists of carboxylate ion, COO^- . It is called polar-ionic head. It is soluble in water and insoluble in oil or grease. It is water attracting or hydrophilic part.

a) The stearate ions are therefore, present on the surface with their COO^{-} groups in water and the hydrocarbon tail staying away from it and remains at the surface.

b) Inside water, these molecules have a unique orientation which keeps the hydrocarbon portion out of water.

c) At critical micelle concentration, the anions are pulled into the bulk of the solution and form a cluster of molecules in which the hydrocarbon tails are in the interior of the cluster and ionic ends are at the surface of the cluster. This formation is called **micelle formation** and the aggregate thus formed is known as **ionic micelle**.

Examples of Micelles are:

- (i) Sodium palmitate $\begin{bmatrix} C_{15}H_{31}COONa \end{bmatrix}$
- (ii) Cetyl trimethyl ammonium bromide $CH_3(CH_2)_{15}(CH_3)_3 N^+ Br^-$
- (iii) Sodium lauryl sulphate $\left[CH_3(CH_2)_{11}SO_3O^{-}Na^{+}\right]$

• In case of detergents e.g., sodium lauryl sulphate, $CH_3(CH_2)_{11}OSO_3^-Na^+$, the polar group is SO_4^{2-} along with the long hydrocarbon chain. Therefore, the mechanism of micelle formation is same as that of soaps.

Multimolecular colloids	Macromolecular colloids	Associated colloids
They consist of aggregates	They consist of large size	They consist of
of atoms or molecules	molecules	aggregation of a large
which generally have		number of ions which
diameter less than 1nm.		behave as colloidal size
The atoms of molecules	The molecules are flexible	They behave as normal
are held by weak van der	and take any shape.	electrolyte at low
waal forces		concentration and behave
		as colloidal only at high
		concentration.
Their molecules masses	They have high molecular	Their molecular masses
are not very high	masses.	are generally high.
They have usually lyophillic	They have usually	Their molecular contain
character	lyophobic character	both lyophilic and
		lyophobic groups.

Cleansing Action of Soap:

Na'

Long hydrocarbon Short ionic part chain (Water soluble) (Oil soluble)

1) The cleansing action of soap is due to its tendency to act as micelle and form emulsions.

2) A soap is composed of long chain of alkyl group called tail and a polar part COO⁻ ion called head.

3) The dirt in the cloth is due to the presence of dust particles in fat or grease which stick to the cloth.

4) When the cloth is dipped in aqueous soap solution, the soap and the dirt come in contact with each other.

- Mitigate against the impacts of heat and chlorides in association with other corrosion-impacting factors
- Use treated and coated wood products if they will be in contact with soils or in waterfront environments
- > Use coatings appropriate for the intended use to protect structures
- Apply proper construction and maintenance practices, accompanied by appropriate material selection and surface treatments, to reduce the impacts of ultraviolet degradation on asphaltic materials in pavements and roofs
- Use appropriate concrete cover and coatings to minimize spalling in reinforced concrete structures

Exercise Questions: VI

- Conductivity (unit Siemen's S) is directly proportional to area of the vessel and the concentration of the solution in it and is inversely proportional to the length of the vessel then the unit of the constant of proportionality is [2002]
 - (a) $Sm mol^{-1}$
 - (b) $Sm^2 mol^{-1}$
 - (c) $S^{-2}m^2$ mol
 - (d) $S^2 m^2 mol^{-2}$.

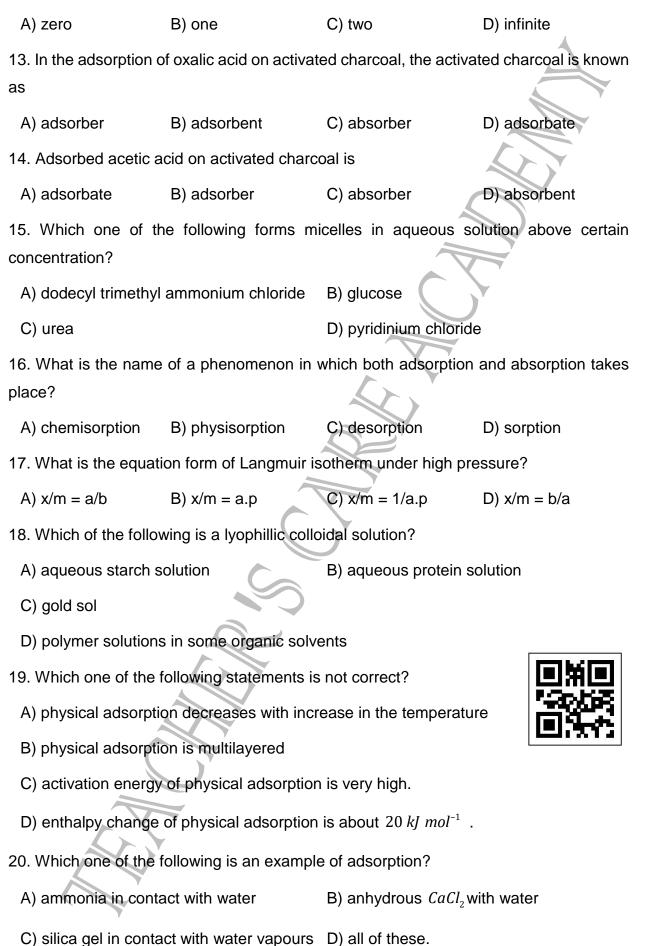
6.5. MULTIPLE CHOICE QUESTIONS

- 1. Which is not correct regarding the adsorption of a gas on surface of solid?
 - A) on increasing temperature adsorption increases continuously
 - B) enthalpy and entropy change is -ve
 - C) adsorption is more for some specific substance
 - D) reversible
- 2. Position of non-polar and polar part in micelles:
 - A) polar on outer surface and non-polar on inner surface
 - B) polar on inner surface and non-polar on outer surface
 - C) distributed over all the surface
 - D) are present on the surface only

B) sodium acetate

A) sodium dodecyl sulphate

C) urea	D) cetyltrimethyl ammonium bromide
4. The statement not applicable to chemiso	option is that it is
A) highly specific	B) independent of temperature
C) irreversible	D) slow
5. The blue colour of water in the sea is due	e to
A) scattering of blue light by water molect	ules
B) reflection of blue sky by sea water	
C) refraction of blue light by the impurities	s in sea water
D) adsorption of other colours, except the	blue colour by water molecules
6. Which of the following is correct for lyoph	nilic sol?
A) irreversible sol	B) formed from inorganic substances
C) readily coagulated by addition of elect	rolyte D) self stabilized
7. Rate of physisorption increases with	
A) decrease in temperature	B) increase in temperature
C) decrease in pressure	D) decrease in surface area
8. Milk is a colloid in which	
A) liquid is dispersed in liquid	B) gas is dispersed in liquid
C) sugar is dispersed in water	D) solid is dispersed in liquid
9. Physical adsorption is inversely proportion	onal to
A) temperature B) volume	C) concentration D) all of these
10. The migration of colloidal particle und	ler the influence of electric field towards an
electrode is known as	
A) electrophoresis	B) electro-osmosis
C) Tyndall effect	D) Brownian movement
11. Butter is a colloidal solution of	
	o \


A) solid–solid B) liquid–solid C) solid–liquid D) gas–solid

www.tcaexamguide.com (95665 35080; 9786269980; 76399 67359; 93602 68118)

4

'EACHER'S CARE ACADEM

12. How many layers are adsorbed in chemical adsorption?	
--	--

Teacher's Care Academy

HEAD OFFICE : 38/23, Vaigundaperumal Koil Street, Kancheepuram-1.

CONTACT : 044-2723 5080; 95665 35080; 9786269980

TNPSC/PG-TRB/TET/SPL. TEACHER (DRAWING) TRB COMPUTER SCIENCE - COACHING CENTRE (Classes : Saturday, Sunday & Govt. Holidays)

BRANCH OFFICE :

Branch Office 1 : 65C, Thillai Nagar (West), 4th Cross Street, Trichy – 620018.

Branch Office 2 : Vijiyaraghavachariar Memorial Hall (Opp to SundarLodge), Salem- 636007.

CONTACT : TRICHY: 7639967359; SALEM: 9360268118

UG TRB – 2023-24

CHEMISTRY

PHYSICSL CHEMISTRY

UNIT 6 - COLLOIDS AND SURFACE CHEMISTRY

	MO	RE INFORMATION
	Website	: www.tcaexamguide.com
1	Play Store	: tcaexamguide
	P YouTube	: Teacher's Care Academy
	Mail	: tcaexamguide@gmail.com
	f facebook	: tcaexamguide
	O Whatsapp	: 95665 35080;
Mol	bile / Office :	97862 69980; 93602 68118; 76399 67359